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1 Introduction

O-minimal theories are model-theoretical accounts of densely ordered al-
gebraic structures where definable sets consist of finitely many (definably)
connected components. In o-minimal structures, one can identify a natural
topology as a nice candidate for Grothendieck’s conception of tame topol-
ogy in section 5 of [5]. This essay will discuss the topological properties of
o-minimal spaces and apply them to a “complex-like” spac K:

In [section 2| I will follow van den Dries’ book [3] to provide a formal definition
for o-minimal structures and the topology on them. I will work towards the
central results on o-minimal spaces, namely:

Theorem [2.16} Given an o-minimal structure A = (A; <,...) and a finite
collection of definable subsets Uy, ..., U, C A", there exists a cell decompo-
sition S of A™ that partitions each U;.

In [section 3| I will utilise Peterzil and Starchenko’s approach in [14] and
explain how o-minimal properties can be used to establish and possibly
strengthen classical complex analysis results on the algebraic closure of ar-
bitrary real closed fields.

Finally, in [section 4 T will discuss to what extent the theory of definable
sets and functions is useful in classical analysis. Based on some excellent
summary of results in this area in [16], I will examine analytic functions
that are made definable in various o-minimal expansions of R.

2 Properties of o-minimal structures

2.1 Preliminaries

In the entirety of this essay I will work within the model theory of first-order
predicate logic with equalit, where expressions consist of =, A, V, —, <>,
vV, d, =, T, L in addition to variables and the non-logical symbols; we admit
predicate and functional symbols in the language, with propositional symbols
realised as O-place predicates and constants realised as 0-place functions.

Given a first-order language L, we use Form(L) to denote the set of all well-
formed formulae in the language. We denote a formula as ¢(z1,...,x,) €
Form(L), where Free(¢) C {x1,...,x,} is the set of free variable in ¢.

A structure in the language is denote as A = (A;...), where A is the universe.

WBy “complex-like”, we mean K = R(7) as the algebraic closure of some arbitrary real
closed field R.

()In this essay we will work mostly with specific models, so we will not bother with
distinguishing equality symbols in a model and the meta-language.

®)Here x1, ..., x, need not all appear in ¢.



For a formula ¢(z1,...,z,) € Form(L), we say that the set

o ={(as,...,a,) €EA" A= o (ay,. .. a,)}
is defined by .

2.2 O-minimal structures

Definition 2.1. Given a structure 2 = (A;...) in a first-order language L
and a subset C' C A, the extended structure ¢ with constants from C' lives
in the language expansion Lo with additional symbols ¢, for each a € C.
For each a € C, ¢ assigns the value a to constant symbol ¢,.

In practice, we usually write each constant symbol ¢, as a directly, when
there is no ambiguity. For example, with the structure of reals R = (R;...),
we view x + 1.5 = 3 as a valid formula in the extended structure Rg, where
1.5 and 3 represent corresponding constant symbols.

Definition 2.2 (Definable sets). Given a structure 2 = (A;...) in a lan-
guage L and some n € N, we denote the definable subsets of A™ as

Def,, (A) = {©* : p(z1,...,2,) € Form(L)}.

We call Def(2A) = |, Def; () the definable sets in the structure 2.

For a function f : U — A™ on some U C A", we say that f is definable if
its graph
L(f) = {(z, f(x)) : 2 € U} C A"

is a definable set.

We will be mainly concerned with definability with constants in this essay.
Thus, from here onwards, when we say that a set/function is definable in a
structure 24 = (A;...), we mean definability with constants, i.e. in (4.

Definition 2.3 (O-minimality). Consider a structure 2 = (A;<,...), on
which < defines a dense linear order without endpoints. Extending A to
endpoints —oo, 00, we say that a subset I C A is an (open) interval if there
exists a < b € Ay, = AU {—00,00} such that

I=(a,b)={ceA:a<c<b}.

We say that 2 is o-minimal if the definable subsets of A, namely Def;(2(4),
consist only of finite unions of singletons and intervals.

The following, for example, could be an immediate reason why the o-minimal
condition can be useful:

Proposition 2.4 (Dedekind completeness for definable sets). Given an o-
minimal structure A = (A;<,...) and a non-empty definable set U C A,
then sup(U) and inf(U) exist in AU {—o0,00}.



Proof. By o-minimality, we can write

U= (U (Pu%’)) U <U {73})

where each (p;,¢;) is an interval and each r; € A is an element. Obviously

sup(U) = max({sup (p;,q;) : 1 <i < k}U{sup{r;}:1<j < /(})
=max({¢: 1 <i<k}U{r;:1<j <1},

inf(U) = min({inf (p;,¢;) : 1 <7 < k}U{inf{r;} : 1 <j < {})
=min({p; : 1 <i<k}U{r;:1 <5</}

both exist in AU {—o0, 00}. O

2.3 Interval topology

Definition 2.5 (Interval topology). Given a structure A = (A4;<,...), it is
easy to verify that the (open) intervals on A form a basis for a topology. We
call this the interval topology on A.

We say that a subset B C A" is a boz if there exist intervals I1,...,I, C A
such that B = [[. ;. The boxes form a basis for the induced product
topology on A™. We say that this is the interval topology on A™.

This topology is nice on an o-minimal structure. As Lemma 3.3(ii) in chapter
1 of van den Dries’ book [3], any 1-dimensional definable set decomposes into
finitely many components:

Proposition 2.6. Consider an o-minimal structure A = (A;<,...) and a
definable set U C A. The boundary of U under the interval topology,

bd(U) = cl(U) \ int(U)

i.e. its closure minus its interior, must be finite. Additionally, if we enu-
merate bd(U) U {—o0, 00} as

—o0=ag < a1 << Apty1 = OO,

then for each 0 < i < m, the interval (a;,a;+1) lies either entirely in U or
entirely in A\ U.

However, these components may not be connected in the classical sense.
For example, as we will later show in [Theorem 3.9 the set of algebraic
numbers Ry, € R forms an o-minimal structure. However, intervals in
Ras are disconnected due to the “gaps” of transcendental numbers. This
motivates the following stipulation:

Definition 2.7. Given a structure 2 = (A; <, ...) with the interval topology,
we say that a definable set X C A" is definably disconnected if there exists
disjoint non-empty definable sets U,V C X that are open in X, with X =
U U V. Otherwise, we say that it is definably connected.



Due to [Proposition 2.4] we can now replicate exactly the proof that intervals
in R are connected, and prove that:

Proposition 2.8. Consider an o-minimal structure A = (A;<,...). For
any a < b € A, the interval (a,b) is definably connected.

2.4 Cell decomposition

Definition 2.9. Given a structure A = (A; <,...) and any U C A", let C'(U)
denote the set of definable continuous functions U — A; we additionally
write

OOO(U) = C(U) U {_007 OO} )
where —o0, 0o refer to constant functions from U to AU {—o0, co}.

A natural partial ordering on C(U) exists such that f; < fo € Co(U) if
for any x € U, fi(z) < fa(x).

Definition 2.10 (Cells). For a finite sequence i1, ...,4, € {0, 1}, we define
an (i1,...,1,)-cell on a structure A = (A; <, ...) recursively:

e A (0)-cell is a singleton in A; a (1)-cell is a non-empty (open) interval
in A.

e A subset U C A" is an (iq,...,i,_1,0)-cell if there is an (iy,...,i,_1)-
cell Uy C A" and a continuous definable function f € C(Up) such
that

U =T(f) = {(x, f(2)) : 2 € U}

is the graph of f; U C A" is an (iy,...,4,_1, 1)-cell if there is an
(i1, ..., in_1)-cell Uy € A" ! and continuous definable functions f <
g € Cx(Up) such that

U={(z,y) €Uy x A: f(z) <y < g(x)}.

Finally, we say that any U C A™ is a cell if it is a (iy,. .., i,)-cell for some
i, in € 10,1}

Also, since both graphs of functions and the “spaces” between two functions
are easily formalised in first-order logic, cells are trivially definable.

They can additionally be used as a higher-dimensional analog of intervals
and singletons, due to the following obvious, nice properties:

Proposition 2.11. Given an o-minimal structure A = (A;<,...), a cell
U C A" is definably connected.

Proposition 2.12. A cell is open if and only if it is a (1,1,...,1)-cell; all
other cells are nowhere dense in A™.

Corollary 2.13. Any (iy,...,i,)-cell U is homeomorphic to an open cell
under some projection map wy : A" — A", simply projecting onto the
coordinates where 1, = 1. We have r = n if and only if U is open.



In later uses we shall refer to this as the natural homeomorphism for U.

Corollary 2.14. If a non-empty definable open subset U C A™ is written as
a finite union of cells, U =|J S, then S contains an open cell.

Now, we can proceed to establish the central tameness result for the interval
topology on an o-minimal structure:

Definition 2.15 (Cell decomposition). On a structure A = (A4; <, ...), con-
sider a partition of A" into a finite set S of disjoint cells, such that [ J S = A™.
We define the condition for S to be a cell decomposition of A™ recursively:

e Any finite partition of A into disjoint cells, i.e. singletons and intervals,
is a cell decomposition of A.
e A finite partition S of A" into disjoint cells is a cell decomposition of
Am if
7(S)={n(U):U € S}
is a cell decomposition of A"~!, where 7 is the projection onto the first
(n — 1) coordinates.

Theorem 2.16 (Cell decomposition theorem). Given an o-minimal struc-
ture A = (A;<,...) and a finite collection of definable subsets Uy, ..., Uy C
A", there exists a cell decomposition S of A™ that partitions each U;, i.e.
such that each U; = J S; for some S; C S.

The proof of this theorem is lengthy and technical, so we are going to provide
here just a sketch of van den Dries’ inductive proof in chapter 3 of [3].

To begin, notice that the 1-dimensional case is simply covered by
sition 2.6 In the inductive case, van den Dries made use of the following

definitions:

Definition 2.17. We say that a set Y C A" is finite over A™ if for each
x € A" the fibre Y, = {y € A: (z,y) € Y} is finite.

Definition 2.18. Given a structure 2 = (4;<,...) and a set ¥ C A"
that is finite over A", we say that a box B C A" is Y -good if for each
(x,y) € Y N (B x A), there exists an interval I C A containing y such that

YN(BxI)=T(f)

is the graph of some continuous functions f € C(B). We say that a point
x € A" is Y-good if it is contained in some Y-good box.

Directly using the definitions, van den Dries quickly proved the following
result, numbered claim 2 in section 2.13 of the chapter:

Lemma 2.19. Given a structure A = (A;<,...). Consider a definable
subset Y C A" that is finite over A™. If a definably connected subset
U C A" consists only of Y -good points, then we can decompose

YnUxA)=T(fA)U---UL(fi)



into graphs of definable continuous functions f; < --- < fi, € C(U).

More importantly, van den Dries also proved the next, more complicated
lemma, numbered claim 3 in the same section:

Lemma 2.20. Given an o-minimal structure A = (A;<,...), suppose that
| Theorem 2.16 (Cell decomposition theorem ) works on A* for any k < n and
a definable subset Y C A"V is finite over A", then any box in A™ contains
a Y -good point.

The 1-dimensional case of this lemma is essentially proposition 1.8 in the
same chapter, derived from the monotonicity theorem (Theorem 3.1.2 in
van den Dries” book):

Theorem 2.21 (Monotonicity theorem). Given an o-minimal structure 2 =
(A;<,...), let f:(a,b) = A be a definable function on the interval (a,b) C
A. Then there are points

a=ayg<ay <---<ap<ag =Do,
such that for each 0 < i < k, the restriction f\(ai aii1) 1S either constant or
strictly monotone and continuous.

The higher-dimensional cases, instead, are derived from the following result
on the decomposition of functions. This itself is established via another
induction by looking at parts of the function that are continuous in all com-
ponents (and monotone in one of them):

Lemma 2.22. Under the same assumptions as for a definable
function f : U — A on some definable set U C A", there exists a cell
decomposition S of A™ that partitions U, such that for each cell V € S
contained in U, the restriction f|, is continuous.

Now, the concept of Y-goodness is expressible in first-order logic, so for any
definable Y C A™*! we have a definable set

R={re A" : zis Y-good}.

Considering the open cells in some cell decomposition that partitions R, then

and together imply the following:
Corollary 2.23. Under the same assumptions as if a definable

subset Y C A" s finite over A™, then there exists a cell decomposition S
of A™ such that for each cell U € S, we can decompose

YU xA)=T(f)u---UT(f)

into graphs of continuous functions fi < --- < fi, € C(U).

Finally, for arbitrary subsets Uy, ..., U, C A", we define

bdn(U;) = {(z,y) 1 v € A",y € bd(()),) }



where bd((U;),) is the boundary of the fibre (U;), C A as defined in [Propo-
sition 2.6, Obviously, each bd,(U;) is finite over A"~ and [Corollary 2.23
applies that each of them decomposes into graphs of continuous functions.
This can be used as a basis for constructing the desired cell decomposition
of A", concluding the proof for the inductive case of [Theorem 2.16 (Celll
ldecomposition theorem)|

We shall end this subsection by looking at two important corollaries of
lorem 2,10k

Corollary 2.24 (Uniform finiteness property). Given an o-minimal struc-
ture A = (A;<,...) and a definable subset Y C A" that is finite over A",
Y must be uniformly finite, i.e. there exists integer n € N such that for all
x e A", Y] <n.

Proof. Since we have proven [Theorem 2.16], we can now conclude that
holds for any dimension n. Let S be such a cell decomposition of

A", then for each cell U € S there exists ky € N such that
Y (U X A) = T(fi) Us-- UT ().
Obviously, for any = € A",

Y| < max k. O

Corollary 2.25. Given an o-minimal structure 2 = (A;<,...) and a de-
finable function f : U — A™ on some definable set U C A", there exists a
cell decomposition S of A™ that partitions U, such that for each cell V € S
contained in U, the restriction f|, is continuous.

Proof. By [I'heorem 2.16| we can find a cell decomposition S that partitions
the graph I'(f) € A"*™. Let m, : A"t — A* denote the projection onto
the first k£ coordinates. Obviously,

T (S) ={m.(V):V € 5}

is a cell decomposition of A", and for each V' € m,(5), we can see via easy

induction that I'( f|,,) is an (i1,...,4,,0,...,0)-cell for some iy,...,i, €
{0,1}. In other words, f|,, is a continuous function, and m,(S) is the de-
composition we need. O

2.5 Dimension

One of the immediate consequences of [Theorem 2.16 (Cell decomposition|

is that we can assign a dimension to every definable set:

Definition 2.26. Given an o-minimal structure 2 = (A; <, ...), the dimen-
sion of a definable set U C A" is given by

dimU = max{i; + -+, : Vis an (iy,...,i,)-cel, V C U}.



We additionally specify that dim @ = —oo.

The use of cells here may seem ad-hoc, but van den Dries demonstrated in
chapter 4 of [3] that it has the desirable properties:

Proposition 2.27. For an (i1, ...,i,)-cellU C A", dimU =iy + -+ + iy,.

Proof. Since U C U trivially, we directly have dimU > v + - - - + iy,

For the other direction, suppose that V' C U is a (ji, ..., Jn)-cell. Let m :
A" — AP denote the projection onto the first k coordinates. For each 1 <
k<n, m(V) C m(U) are (j1,...,Jx)- and (i1, ..., ix)-cells respectively. It
is then obvious that 7, = 0 implies jr = 0 because in this case, the fibres
(m(V)), C (mx(U)), must be singletons or & for each z € AF1.

r =

In other words, each j, < iy, ie. j1+---+7J, <11 +---+1,. We can thus
conclude that dimU =4, + -+ - + 4. O

Particularly, the natural homeomorphism of a cell U C A™ can now be
written as my : A" — AU,

Proposition 2.28. If we write a non-empty definable set U C A™ as a finite
union of cells U = Uj V; where each V; is an <z’§]), e ,i?)-cell, then

dim U = maxdim V; = max (z'gj) N an)) _
J J
Proof. Since each V; C U trivially, we directly have

dim U > maxdim Vj.
J

For the other direction, consider an (¢1,...,¢,)-cell W C U. We find by
[Theorem 2.16 (Cell decomposition theorem)| a decomposition S of A" that
partitions W and each V;. We can write W = J S’ for some finite S" C S.

Consider the natural homeomorphism 7y : A" — AW For each W' €
S, we have W' C W, so mu(W’) must also be a cell in A%™W with

T (W) = | 7 (V).

w'es’

By |Proposition 2.12| and |Corollary 2.14] S” must contain some (¢}, ...,¢)-
cell Wy such that m) (W) is an open cell, ie. a (1,...,1)-cell in A4™W.
Wy must exactly be an (¢4,...,¢,)-cell, and Wy C V; for some j, i.e. {1 +
-+ 4, < dimVj. It follows that dim U < max; dim V.

Combining both directions and using [Proposition 2.27, we have

dim U = maxdim V; = max (igj)+---—|—z’g)> . O
j j



This is then an immediate corollary:

Corollary 2.29. For definable sets U,V C A",
dim(U UV) = max{dim U, dim V'}.
Also, in preparation for the next subsection, we prove the following propo-
sition:
Proposition 2.30. Let U C A" be a non-empty definable set. Then
dimfr(U) < dim U,
where the frontier fr(U) = cl(U) \ U.

To prove this, we first cite some technical result from [3]:

Fact 1. Suppose that U C A", V. C A™ are definable sets with f:U — V
being a definable bijection. Then dimU = dim V.

Fact 2. Let U € A™™ be a definable set. For each d € {—00,0,...,m}, let
Ug={z€ A" :dimU, =d}.
Then each Uy € A™ is definable, with
dim U = max (dim Uy + d) .
Fact 3. Let U C A" be a non-empty definable set. Then the set
U= {z € A:d(U,) # ((U)),}

is finite.

Proof of |[Proposition 2.30). We prove this by induction: the base case where
n = 1 is trivial, because for U C A, fr(U) C bd(U) is finite by
tion 2.6l

For the inductive case, first suppose that dimU = 0, i.e. U is finite. Then
fr(U) = @ trivially, so the proposition holds. When dim U > 0, we consider
definable bijections ¢; : (x1,...,2,) — (%, 21, ..., i1, Tit1, - - ., T,) for any
1 <@ < n. For each ¢, let

bBi={z e A:d((@U)),) # (cl(@i(U))),} € 4,
which is finite by and write Pf = A\ P,. Then,

clpi(U)) N (P x A7) = [ ({2} x ell(9i(U)),)) -

z€PS

(M) The proofs for these results are rather lengthy and hence omitted here. They can
be found in chapter 4 of van den Dries’ book [3]: as Proposition 1.3(i), as
Corollary 4.1.6(i), and as Lemma 4.1.7.



Now, by inductive hypothesis, dim fr((¢;(U)),) < dim (¢;(U)),. For each
dy < dy € {—00,0,...,n— 1}, let

(i) = L € PE - dimr(((U1),) =, dimn ((U), = o)}
By we can compute that

dim ; (fr(U) N (A7 x Pf x A7) = dim(fr(:(U)) N (P x A™7H)
= dim | ({z} x fr((p:(U)),))

z€EP?

= mase (dim (2i(U))jg, 0+

< max <dim (@i(U)) 1y 0 T d2>

dy,d2
— dim(:(U) (p; < AP
= dimp; (U N (A" x Pf x A"7)).

By definable bijections preserve dimension, so indeed

dim (f(U) 1 (A x 7 x AP)) < dim(U 0 (47 x B x A7),

Finally, notice that

An:(Plx"'XPn)UU(Ai_IXPiCXAn_i)

where P; x --- x P, is finite. By [Corollary 2.29

dim(fr(U) N (P, x --- X P,));
dim(fr(U) N (Ai’l x Pf x A"’i)) foreach 1 <3 < n}
< max{dim(U N (Ai*1 x Pf x A"*i)) 1 <i< n}

=dimU. ]

dimfr(U) = max{

2.6 The stratification theorem

The analysis of dimensions allows us to establish o-minimal structures as
a candidate for Grothendieck’s tame topology in the sense of topological
stratifications:

Definition 2.31. Given a structure 2 = (A; <,...) with the interval topol-
ogy, we say that some subset U C A" is a (topological) k‘—mamfol if, in
the sub-topology on U, every element x € U lies in a neighbourhood V' C U
that is homeomorphic to a box B C AF.

() There is no need to enforce additionally that U is Hausdorff, because A" is trivially
Hausdorff under the interval topology, given that the ordering < is dense.

10



The condition of bing a k-manifold is preserved under homeomorphisms, or
in particular, the natural homeomorphism gy for a cell U. We thus have:

Proposition 2.32. Fach cellU C A" is a (dim U)-manifold.

Definition 2.33 (Stratification). We say that a closed set in a topological
space, U C T, has a stratification if it has a filtration, i.e. an increasing chain

of subsets
=X ,1CXoCX;C---CX, =0,

such that for each 0 < ¢ < k, X; \ X;_1 is a i-manifold with frontier
fl“(Xi \ Xzel) C X1

Theorem 2.34 (Stratification theorem). Given an o-minimal structure A =
(A;<,...), any definable closed set U C A™ has a stratification.

Proof. We prove by induction on the dimension of U:

For the base case where U = @ or dimU = 0, i.e. U is finite, the statement
is trivial.

For the inductive case, by [Theorem 2.16 (Cell decomposition theorem)| we
have a cell decomposition S of A™ that partitions U and by [Proposition 2.2§|
there exists a cell V C U in S such that dimV = dim U.

For each such cell V| we write inty (V') for its interior in the sub-topology
on U. Now let S’ be a refinement of S, i.e. a cell decomposition of A™ that
partitions any cell in S as well as inty (V') for any cell V € S, V' C U such that
dimV =dimU. For any cell V' € S, V! C U such that dim V' = dim U, we
know that V/ C V C U for some cell V € U and

dim V' =dimV = dim U.

Additionally, V' \ inty (V) C fr(inty (1)), so by [Proposition 2.30)

dim(V \ inty(V)) < dim fr(inty (V) < diminty (V) < dim'V = dim V7,

ie. V!V \inty (V). We must have V' C inty (V).

Finally, consider the natural homeomorphism 7. Since dim V' = dim V/,
7o) (V') C may (V) are obviously both open cells in A%™Y 'so V"’ is open in
V' and thus open in U.

Now, we can set Xgqimy = U and
Xgmu—1 = J{V' €9 : V' CUdimV’ < dimU}.

Then Xgimu \ Xaimv—1 is a finite union of cells V! € S, V' C U such that
V' is open in U and dim V' = dim U. By |Proposition 2.32 each such V' is
a (dim U)-manifold. Since the interval topology is naturally Hausdorff, the
finite union of (dim U')-manifolds open in U is again a (dim U)-manifold. This

11



implies Xgimp_1 is closed, hence applying the inductive hypothesis yields the
remainder of the filtration:

F=X_1CXoC - C Xgimvu-1- O

3 Definable complex analysis

3.1 Real closed fields

One of the most important example of an o-minimal structure is the ordered
field of reals (R; <, +,—, x,0,1). In the second half of this essay, we shall
apply the properties of o-minimality to complex analysis by viewing C = R?
as a real vector space.

Before we start, do note that, due to |Corollary 2.24;

Proposition 3.1. O-minimality is preserved under elementary equivalence.

This is proven as Theorem 0.2 in [9]. As a result, we can work with a
complete first-order axiomatisation of R instead, and our results will also
apply to non-standard real and complex fields. Namely, we consider an
arbitrary real closed field:

Definition 3.2 (Real closed fields). We say that a field F' is formally real
if —1 is not a sum of squares in F'. We say that a formally real field is real
closed if it has no proper algebraic extensions that are also formally real.

We additionally say that a field extension L | F' is a real closure if L is
algebraic over F' and real closed. As proven in chapter XI of Serge Lang’s
Algebra [11], the real closure of an ordered formally real field is unique up
to order-preserving isomorphisms.

Of course, the widely-used conditions in [Definition 3.2| are not readily ax-
iomatisable in first-order logic. We consider an equivalent definition:

Definition 3.3 (Ordered fields). We say that (F;<,+, —, x,0,1) is an or-
dered field if (F;+,—,x,0,1) is a field, and < is a total ordering on F
satisfying

e for any a,b,c € F such that a < b, we have a + ¢ < b+ ¢;

e for any a,b € F such that 0 < a, 0 < b, we have 0 < ab.

Definition 3.4. The first-order theory of (ordered) real closed fields, de-
noted RCF, is axiomatised such that (F; <,+, —, x,0,1) F RCF if and only
if

o (F;<,+,—,%,0,1) is an ordered field;
e for any a € F such that a > 0, there exists b € F such that b* = q;
e any polynomial of odd degree in F[X] has a root in F.

12



For some (F; <, +,—, x,0,1) F RCF, it is easy to observe that every element
in the field extension F (\/—1) has a square root: namely, for any element

a—+by—1¢€ F(\/—l), we have

2

2 2 _ 2 2
\/a—l—\/; +b +\/ a+\/2a +02 e R

With fundamentally the same proof via Galois theory of C being algebraically
closed, this means that F (\/—1) is algebraically closed. It follows that our
first-order axiomatisation RCF is equivalent to the conditions for real closed
fields:

Proposition 3.5. (F;<,+,—,%x,0,1) F RCF@ if and only if F is a real
closed field under + and x.

Proof. The backward direction is trivial. For the forward direction, the
axioms of an ordered field immediately implies that squares are non-negative,
so —1 < 0 cannot be a sum of squares, i.e. F' is formally real.

Now, F (\/—1) is algebraically closed, so any algebraic extension L > F

must satisfy
F<L<F(V-1).

Here F (\/—1) is an extension of degree 2, which is not formally real. Thus
the only algebraic extension of F' that is formally real is F itself. F' is real
closed. O

We now work towards proving that (F'; <, +, —, x, 0, 1) is an o-minimal struc-
ture:

Lemma 3.6 (Intermediate value theorem). Given some real closed field F
and a polynomial f(X) € F[X] such that f(a) > 0, f(b) <0 for a,b € F.
Then there ezists ¢ between a and b such that f(c) = 0.

Proof. F (\/ —1) is algebraically closed, so f must be factorisable into linear
and quadratic factors. Consider an irreducible quadratic factor

2 P\? P’

X +pX+qg= (X+§) —i—q—z.
It cannot have a root in F', so we must have (X +p/2)* >0, ¢ — p*/4 > 0,
i.e. the sign of a quadratic factor cannot change. Therefore, there must exist

a linear factor (X — ¢) of f such that (a — ¢), (b — ¢) are of different signs.
Then c is a root of f that lies between a and b. O]

(6)Here the ordering < is naturally given by the property that a < b if and only if
b—a = c? for some c € F'\ {0}.
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Lemma 3.7. Consider a real closed field § = (F;<,4+,—, %,0,1) and a
real closed subfield K C F. Let L = {<,+,—, X,0,1} denote the first-order
language for real closed fields and Lk its expansion with constants from K.
For any quantifier-free sentence p(x) € Form(Lg) with only one variable,
we can write

k ¢
@° = (U (pi,%‘)> U <U {Tj}> C Def;(3k)

as a finite union of intervals and singletons, where p;, q;,r; € K.

Proof. The propositional connectives =, A, V, —, < trivially corresponds
to set operations like complements, intersections and unions. Therefore, it
suffices that we prove the lemma for atomic formulae, i.e. f(X) = g(X) or
f(X) < g(X) where f,g € K[X] are polynomials.

By the fundamental theorem of algebra, f — g has finitely many roots in F'.
We can enumerate them as

ar < az < ...<ag.

Since K is real closed, we must have aq,...,a; € K. Let ag = —00, agyq1 =
00, then for any 0 < i < k, the sign of f — g does not change on the
interval (a;, a;4+1), by [Lemma 3.6 (Intermediate value theorem), In other
words, f = g and f < g both correspond to unions of finitely many sets
among the following:

(—o0,a1),{a1}, (a1,a2), ..., {ar_1}, (agp_1,ax), {ar}, (a, o). O

Proposition 3.8. RCF admits quantifier elimination.

A regular approach to this proposition, for example taken in van den Dries’
book [3], first establishes cell decomposition specifically for semialgebraic
sets and deduces the Tarski-Seidenberg theorem:

Theorem (Tarski-Seidenberg). Given a real closed field F, we say that a
set U C F" is semialgebraic if it is a finite union of sets of the form

{r e F" :pi(x) = =pp(x) = 0,q1(x) > 0,...,q(x) > 0}.

Let m : F™*1 — ™ be the projection onto the first n coordinates, then for
any semialgebraic set U C F™ | 7(U) is semialgebraic.

However, we shall mention here a simpler model-theoretical proof by David
Marker, presented in chapter 1 of [13]. Marker first established the following
test for quantifier elimination as Theorem 1.4 in his book:

14



Fact 4. Let T be a theory in a first-order language L. Given some formula
o(z1,...,z,) € Form(L), if for any models A,B E T such that € < 2,
¢ < B s a shared substructure and any a4, ...,a, € €,

AE p(ay,...,a,) if and only if B E p(ay,...,a,),

then T'ENxy-- -V, (p < V) for some quantifier-free ¥ (z, ..., x,).

Proof of |[Proposition 3.8 By induction, it obviously suffices to prove that
for any quantifier-free formula ¢(x,v1,...,v,), there exists quantifier-free
¥(v1,...,v,) such that

RCF E Yv; -+ -V, (3z ¢ < ).

For any such ¢, we invoke [Fact 4} consider 2,8 F RCF and some shared
substructure €. Given our language L = {<,+,—, x,0,1}, € must be an
ordered integral domain. Let § be the real closure of the fraction field of €,
then § <2 and § < ‘B due to its uniqueness.

Now, suppose that 2 E Jz ¢(x,aq,...,a,) for ai,...,a, € €. Since ¢ is
quantifier-free, by oz, ay,... ,an)m is a finite union of intervals
and singletons, where the singletons all lie in § and the intervals have end-
points in §. Then, there must exist

yESﬂgp(m,al,...,an)mg%,

so B F dr p(x,aq,...,a,) as well. By symmetry, the proof for the assump-
tion in [Fact 4] finishes. O

An immediate consequence is that the theory RCF is model-complete. Ad-
ditionally, for a model § = (F'; <, +, —, X,0,1) F RCF, the ordering ensures
that £’ is a field of characteristic 0, i.e. the minimal substructure of any
such § is naturally Z. By quantifier elimination, any first-order sentence is
equivalent to a quantifier-free proposition about Z, so RCF is trivially also
a complete theory as we desire.

We can finally prove that:
Theorem 3.9. Suppose that § = (F;<,+,—, x,0,1) E RCF, then § is an

o-minimal structure.

Proof. Given the language L = {<,+,—,x,0,1}, consider any ¢(z) €
Form(Lp) with one free variable. We can view it as ¢(z;a4,...,a,) with
constant parameters aq,...,a, € F', where

o(z;vq,...,0,) € Form(L).

By [Proposition 3.8, we have quantifier-free ¢(z;vq,...,v,) € Form(L) such
that

S E VoV - -V, (e(x; 01, ..., 0,) < U(x;01,..0,0,)),
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ie o(x;a,... ,an)g = Y(z;aq,... ,an)g. However, here ¢(z;aq,...,a,) is a
quantifier-free formula in Form(Lp), and we have shown in that
U(x;a,... ,an)g is a finite union of intervals and singletons. This proves
that § is o-minimal. O

3.2 Paths and winding numbers

From this section onwards, we shall use R = (R; <, +,—, x,0,1,...) to de-
note an arbitrary o-minimal structur where R is a real closed field, i.e.
such that R F RCF. We use K to denote the “complex” extension of R
that contains a square root of —1. We write i = /—1, then K = R(i) is
algebraically closed.

We write every element in K as z =z + iy for z,y € R. Just as in classical
analysis, we say that = = Re(z) is the real part and y = Im(z) is the
imaginary part. We also define as usual the complex conjugate z = = — iy
and the modulus of z:

|2| =22 = /22 +y?2 € R.

However, we do not have the concept of argument arg(z) in K because we
cannot access the exponential function in an arbitrary real closed field. In
order to recover winding numbers on K, we consider the unit circle S =
{z € K : |z| = 1}, which is a multiplicative subgroup of K. It is easy to
verify that, viewed in R?, we can decompose

gl — {=1,1} UT(s9) UT(—s0),

where sy : (—=1,1) — R is a definable continuous function, for example
given by so(z) = v/1 — 2. We then have a definable continuous bijection
oo : [0,1) — St given by

1 it t =0,
o )T if0<i<)2
0= it =1/2,

At — 3 —isg(4t —3) if1/2<t<1.

Now, we consider a covering of S!, given by H = Z x S! with a group
operation

(m+mn,ay)  if oy (zy) > 05 (2),
(m,z) + (n,y) = oq ' (xy) > 05" (1),
(m+n+1,zy) otherwise.

(M Here we allow R to denote not just the real closed field (R; <,+, —, x,0,1), but also
any o-minimal extensions of it (in an expanded language).
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Notice that the lexicographic ordering
(m,z) < (n,y) if m<nor (m=nando;" () <oy (y))

makes H a linearly ordered group, and the induced interval topology makes
H a covering space of S! under the covering map 7 : (n,x) — x. Viewing S*
as a multiplicative group, then 7 is at the same time a group homomorphism.

Definition 3.10 (Definable paths). We call a definable continuous function
v :[0,1] — K a definable path. We denote its image as

7 =)t e01]}.

We say that a definable path v is circular if v(0) = ~(1).

Theorem 3.11 (Path lifting theorem). Any definable path v such that v* C
St lifts to a continuous function 7 : [0,1] — H, such that v = 7o 7.

Additionally, 7 is definable if we view H = Z x S* C R3.
Proof. We consider the definable set

E={te(0,1):4(t)=1}.

Since R is o-minimal, by [Proposition 2.6[ we can enumerate bd(E) U {0, 1}
as

O=ap<a; <...<ag <agy = 1.

We first assign an integer to each interval and singleton in the decomposition
above recursively with

N :{{ao}, (a0, a1) {ar}, ..., (a, k1)  {ak}} = Z
defined as the following:

Firstly, if v(0) = 1, then we set N({ag}) = 0; otherwise we set N({ag}) =
N(ao, Cl1> =0.

Now, for each next interval (a;, a;+1) where vy(a;) = 1, if v = 1 constantly on
(aj, a;41), then we set N(a;, a;41) = N({a;}). Otherwise, v # 1 on (a;, a;11)-
Since y(a;) = 1, by continuity there exists a sub-interval (a;,d) C (a;, a;+1)
on which

() — 1] <2,

i.e. v(t) # —1, and thus Re(v(t)) # 0. By |[Lemma 3.6 (Intermediate value|
theorem), we must then have either Reoy > 0 or Reoy < 0 on (a;,9).
In the former case set N(a;, a;41) = N({a;}), while in the latter case set
N(CL,L', CLiJrl) = N({al}) —1.

For each next singleton a; such that y(a;) = 1, if v = 1 constantly on
(a;—1,a;), then we set N({a;}) = N(a;—1,a;). Otherwise, v # 1 on (a;_1, a;),
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and similarly we must have either Reoy > 0 or Reoy < 0 on some (6, a;) C
(@;j—1,a;). In the former case set N({a;}) = N(a;_1,a;), while in the latter
case set N({a;}) = N(a;_1,a;) + 1.

Finally, if v(1) # 1, then we simply set N({axs1}) = N(ag, axi1)-
We then have definable function 4 : [0, 1] — H given by

ﬂﬂz{mmmbmm> if £ = a,

(N(ai, aip1),7(t)) if ¢ € (a5, ai1) -

It is easy to verify that 7 is continuous — it suffices to check at each a; —
hence it is the desired lift of ~. m

It follows immediately that:

Corollary 3.12. For any definable path v and some w € K \~v*, there exists
a definable continuous function 4, : [0,1] — H such that, for any t € [0, 1],

V(1) = w +[y(t) = wl - 7((t))-

Additionally, this function is unique up to an integer constant, i.e. if a, (3 :
[0,1] — H both satisfy the condition above, then o =  + (n,1) for some
n e .

Definition 3.13 (Winding numbers). For any definable path 7 and some
w € K\ v*, we define +’s winding number around w to be

W(r,w) = Fu(1) = 7 (0) € H.

[Corollary 3.12|ensures that this is well-defined and independent of the choice
of 7.

Especially, observe that

_ 7)) _ (1) —w) () ~w
(W, w)) = T2 =

(Fw(1)) _
(3u(0)) — (7(0) = w) [y(1) — w|’
(

Therefore, if v is circular, then W (v, w) = (n,1) for some n € Z. We will
abuse notation and simply say W (v, w) = n instead if we are only concerned
with circular paths.

As shown in [I4], this reconstruction of the winding numbers shares many
immediate properties of its classical counterpart:

Proposition 3.14. For definable paths 1, v2 and w € K \ (v U~s5),

e we denote the opposite path of v as vy, such that vy, (t) =y (1 — 1),
then W (77 ,w) = =W (v, w);
e for any definable increasing bijection s : [0,1] — [0,1], v, o s is also a

definable path with W (v, o s,w) = W (y1,w);
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o if 71(1) = (0), then we denote the concatenation of v; and vy as
Y1 * Y2, such that

(1% 72)(1) = {Wﬁ) fo<t<1/2

V2t —1) if1/2 <t <1,

and W(’YI * Y2, w) = W(’Yl; 'l,U) + W(’}Q; w)

Proposition 3.15. For definable paths 1, V2 such that 0 & vf U5, we have
Wy - 2,0) = W(y1,0) + W(72,0),

where 1 - Y2 is given by t — y1(t) - y2(1).

Proposition 3.16. If v is a definable circular path such that v* C S', then
W(v,0) = 0.

Proposition 3.17. Let v be a definable circular path and U a definably
connected component of C'\ v*. For any wy,wq € U,

W(’}/, wl) = W(V? wQ)'

Here [Proposition 3.17|is a direct corollary of the following useful lemma:

Lemma 3.18. Let U C K be a definable, definably connected set and h :
[0,1] x U — S be a definable continuous function such that, for any z € U,
h, it — h(t,z) is a circular path. Then W (h,,0) is constant over U.

To prove this lemma, we shall cite without proof the following fact about
general o-minimal structures, numbered Fact 2.4 in [14]:

Fact 5. Let XY, Z be definable sets in an o-minimal structure with definable
choic where X is definably compac@ an interval for example, and Z
carries some definable norm onto a real closed field. If f : X xY — Z
1s a definable continuous map and yg € Y, then for every e > 0 there is a
netghbourhood U of vyo, open in Y, such that

|f(x,y) - f(‘rvy(])’ <é

foranyx e X, yeU.

(®)Definable choice refers to finding a definable function f : 7(S) — R™, whose graph is
contained in the given definable set S C R™™", where 7 : R™™™ — R™ is the projection
onto the first m coordinates. As proven in chapter 6 of van den Dries’ book [3], this is
possible for any o-minimal structure with an ordered abelian group operation.

®)Due to length constraints we do not discuss the concept of definable compactness
in detail in this essay. We do use here Theorem 2.1 in [I7], an o-minimal analog of the
Bolzano-Weierstrass theorem, that a definable set in an o-minimal structure is definably
compact if and only if it is closed and bounded.
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Proof of[Lemma 3.18. [Theorem 2.16 (Cell decomposition theorem)| yields a
finite decomposition of K that partitions the set

{(t,z) : t€]0,1],z € U, h(t,z) =1},

on which a similar recursion as in the proof of [I'heorem 3.11| can be per-
formed. Therefore, h has a definable lift A : [0,1] x U — H. Let

W (h.,0) = h(1, 2) — h(0, 2),

then we have definable sets {z € U : W(h,,0) = n} for each n € Z.

Now, we assume that W (h,,,0) = n for some zy € Z. We consider A’ :
[0,1] x U — S* given by

B (t, z)=

then A’ is continuous with h'(¢, zp) = 1 for any ¢ € [0, 1].

Using |[Fact 5 we can find a neighbourhood V' of 2y, open in U, such that for
any z € V,

|W(t,2) — W (t,20)] <2,
ie. h(t,z) # —1. If we consider R/, : t — h'(t, z), then A’ is not surjective,
and by [Proposition 3.16{ W (R, 0) = 0 for any z € V', and by [Proposition 3.15|
we have

W (hs,0) = W(L.,0) + W(h.,,0) = W(hs,,0).

Therefore, the sets {z € U : W(h,,0) =n} are open in U, and since U is
definably connected we must have W(h,,0) = n on the entirety of U for
some fixed n € Z. O

3.3 Simple closed curves

Definition 3.19 (Simple closed curves). We say that a definable set C' C K
is a simple closed curve if C' = v* for some definable circular path v, such
that its restriction 7][0’1) is a bijection.

The o-minimal analog of Jordan curve theorem is proven in Woerheide’s PhD
thesis [21]:

Theorem 3.20. If C C K is a definable simple closed curve, then K\ C' is a
union of two disjoint definably connected open sets, one of which is bounded
and the other is unbounded.

We call the bounded component the interior of C', Int(C'). Due to
[sition 3.14] and [Proposition 3.16| for our definition of winding numbers, we
can now replicate exactly the classical proo for the following result:

(10)For example, refer to Theorem V.1.4 and V.2.2 in [19].
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Lemma 3.21. Let v be a definable circular path with bijective restriction
7|[071), such that C' = ~* is a simple closed curve. Then

e for w in the unbounded component of K\ C, W(v,w) = 0;
o for w e Int(C), W(vy,w) € {1,—1}.

We specifically say that ~ has positive orientation if W(vy,w) = 1 for w €
Int(C'), and we say that vy has negative orientation otherwise.

Notably, if a simple closed curve C' = ~* is given by a definable circular
path v with negative orientation, then W (y~,w) = 1 by [Proposition 3.14}
So we can always define a simple closed curve using a path with positive
orientation. Thus, from here onwards, when we say that a definable path
is a parametrisation for simple closed curve C' = ~*, we always imply that
has positive orientation.

Definition 3.22. Let C' be a simple closed curve with parametrisation ~
and f: C — K be a definable continuous function. For any w € K\ f(C),
we define f’s winding number along curve C around w to be

Wc(f,w) = W(f OP)/?w)‘

Definition 3.23 (Star-shaped curves). A simple closed curve C' is star-
shaped if there exists some p € Int(C) such that

(1—-t)p+tz e Int(C)

for any z € C' and t € [0,1). Infomally, C is star-shaped if for any z € C,
the line segment between z and p lies in its interior.

When (' is star-shaped, we can explicitly identify the two definably con-
nected subsets of K \ C, namely the inner subset

Int(C)={(1—-t)p+tz:te€l0,1),2€C}

and the outer one {(1 —t)p+tz:t > 1,z € C}. This allows us to prove the
following proposition:

Proposition 3.24. Let C' be a definable, star-shaped simple closed curve.
Let f: CUInt(C) — K be a definable continuous function. For any w €
K\ f(Cculnt(C)), We(f,w) =0.

Proof. Suppose that C' has parametrisation v and is made star-shaped by
the point p € Int(C). We consider the map z : [0,1] x [0,1] — f(C U Int(C))
given by

z(ts) = f(1—s)p+sy(t)).

Define A : [0,1] x [0,1] — S* by



which is a well-defined continuous function because w ¢ f(C U Int(C)). By
Lemma 3.18 W (hs,0) is constant over (0, 1], so

We(f,w) = W(hy,0) = W(hs,0)

for any s € (0,1).

Additionally, hg : t — (f(p) —w) / |2(t, z) — w| is constant. Invoking [Fact 5|
we must be able to find € > 0 such that, for any s € (0,¢), t € [0, 1],

|h(t,s) — h(t,0)] < 2.
This means that h, must not be a surjective function onto S' and hence

W (hs,0) = 0 by |Proposition 3.16, We can thus conclude that We(f, w) = 0
as well. O

3.4 Differentiability

Definition 3.25. Given a definable open set U C R™ and definable f : U —
R"™ we say that f is R-differentiable at x € U if there exists a linear map
T : R™ — R" such that

o M@+ 1) = () = T(h)|

B0 1| =0

We would then denote T" as df (z), the R-differential at .

Given definable open U C K and definable f : U — K, we say that f is
K -differentiable at x € U if f is R-differentiable as a function on R? and its
differential can be written as df (z) : h — Ah for some A € K. We then say
that the K-derivative of f at z, f'(z) = .

It is easy to see that for f : x+iy — u(x,y)+iv(z,y), f is K-differentiable at

z if and only if it is R-differentiable at z and the Cauchy-Riemann equations

hold:
ou B ov ou ov

(9_1;(2) = 8_y(z)’ a—y(z) = —%(2)-

The concept of winding numbers is useful here due to the following simple
lemma, proven in subsection 2.4 of Peterzil and Starchenko’s paper [14]:

Fact 6. Given a definable open set U C K and definable f : U — K, if f
is K-differentiable at z € U with f'(z) # 0, then there exists an € > 0 such
that, for every r < e, if C, is the circle around z with radius r, i.e.

Cr={ze€K:|x—zl=r},

then We, (f, f(2)) = 1.
This leads immediately to the following result, part of Lemma 2.30 in [14]:
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Lemma 3.26. Let C' be a definable simple closed curve and f : CUInt(C') —
K be a definable continuous function that is K-differentiable on Int(C') \ L
for some definable subset L with dim L < 1. Let U be a definably connected
component of K\ f(C) and U U f(Int(C)) # @, then for any w € U,
Wc(f, w) > 0.

As a sketch for the proof, via cell decomposition one can find a generic point
w € U here, such that f~'(w) = {z,..., 2} is finite, and f is differentiable
at each z; with f'(z;) # 0. Using [Fact 6| and path operations in

tion 5.14] we can compute

k
WC(faw>:ZW01(f7w):k>07
=1

where each C; is a small enough circle around z;.
Now we can prove an important lemma in definable complex analysis:

Lemma 3.27 (Maximum principle for star-shaped curves). Let C' be a defin-
able, star-shaped simple closed curve. Let f: C'UInt(C) — K be a definable
continuous function that is K -differentiable on Int(C)\ L for some definable
subset L with dim L < 1. For any w € Int(C),

f(w) € f(C) Uint(f(Int(C))).

In particular, we have

[f(w)| < max |f(z)] = max[f(z)].

z€CUInt(C) zeC

Proof. Assume that f(w) ¢ f(C). We can find the definably connected
component W of K\ f(C) containing f(w), then

f(w) e WU f(Int(C)).

Therefore, by [Lemma 3.26, for any uw € W, Wo(f,u) # 0. By
tion 3.24] this means that W C f(C UInt(C)). Now, by definition, W C

K\ f(C),so W C f(Int(C')) and hence

f(w) € int(f(Int(C)))
because W is additionally open. O

From the maximum principle, useful results can be established:

Theorem 3.28 (Identity theorem). Let U C K be a definably connected
open set and f : U — K be a definable K -differentiable function. We define

U={wecd): f(z) converges as z — w}

and consider f: U — K given by flw) = lim, ., f(2). If FY(w) is infinite
for some u € K, then f(z) =wu for all z € U.
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The proof for this result, found as Theorem 2.33(i) in [14], is again rather
technical. We provide here a sketch for it:

Let X = f ~1(u) be infinite. Suppose for contradiction that f is not constant,
then X is closed in U and in an appropriate cell decomposition we can find
an open cell C'in U\ X with a 1-dimensional intersection fr(C)NX. Now, by
choosing some w € C' close enough to that intersection and rotate f around
w:

o) - 11 (f@ (== w) +w) =),

a=0
g will be zero on some star-shaped curve around w while non-zero in the
interior, contradicting [Lemma 3.27, Therefore, f must be constant in this
case.

Now, an analog of the standard identity theorem in classical complex analysis
is an immediate corollary:

Corollary 3.29 (Identity theorem). Let U C K be a definably connected
open set and f: U — K be a definable K -differentiable function. If f~1(u)
is infinite for some u € K, then f(z) =wu for all z € U.

Furthermore, we shall end by recovering the definable version of Liouville’s
theorem:

Theorem 3.30 (Liouville’s theorem). If f : K — K is a definable K-
differentiable function such that |f| is bounded on K, then f is a constant
function.

Proof. Consider h : K — K given by

Q=10

1'(0) otherwise.

We can see that h is continuous on K and K-differentiable on K \ {0}.
Therefore, given some w € K \ {0}, for any circle

C.={ze€K:|z|=r}

with radius r > |w|, we can apply [Lemma 3.27| and claim that

f(w) = f(O)]

|h(w)] = | < max |£(2) = f(w) < 2M

— - Y

H 2€Cr r r

where M is an upper bound for |f].

Since 2M /r — 0 as r — oo, we can conclude that f(w) — f(0) = 0 for any
w € K\ {0}, i.e. f is constant on K. O
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3.5 Singularities

We now proceed to the analysis of singularities of a K-differentiable function,
where definability allows us to disregard many badly behaving functions.
We start with quite a strong theorem, that 1-dimensional singularities of a
continuous function are removable:

Theorem 3.31. Let U C K be a definable open set and f : U — K be
a definable continuous function that is K-differentiable on U \ L for some
definable subset L with dim L < 1. Then f is K-differentiable on U.

In fact, for any w € U N L, one can pick an arbitrary pat ~ such that
v([0,1)) € U \ cl(L) and (1) = w, then the derivative can be expicitly

computed as ) — Fw)
! — lim 27 ) = J{w
Jiw) = tLl— y(t)—w

Due to length constraints, we shall omit the technical verification in subsec-
tion 2.7 of [14] that the limit is independent of the choice of «: it is basically

multiple applications of [Lemma 3.27]

The more well-known result, that isolated singularities can be removed so
long as the function is locally bounded, is a corollary of this:

Corollary 3.32. Let U C K be a definable open set and f: U\ {w} — K
be a definable K -differentiable function for some w € U. If f is bounded in
a neighbourhood of w, then f extends to w as a K-differentiable function.

Proof. We define g : U — K by
(2 —w) f(2) if 2 £ w,
9(2) =

0 otherwise.

Since f is bounded near z, g is continuous on U and K-differentiable on

U\ {w}. By [Theorem 3.31}, g is K-differentiable on U.

By definition, ¢'(w) = lim,_,, f(z). Therefore, setting f(w) = ¢'(w) makes
f continuous on U. By [Theorem 3.31| again we know that this extension is
K-differentiable on U. O

While these results are analogous to their classical counterparts, definable
complex analysis is actually more “tame”. As proven in subsection 2.9 of
[14], isolated non-removable singularities are all poles:

Proposition 3.33. Let U C K be a definable open set and f : U\{w} — K
be a definable K-differentiable function for some w € U. Then, either f or
1/f extends to a K-differentiable function in an open neighbourhood of w.

(1D Here, in any decomposition that partitions U and cl(L), all open cells in U lies in
U\cl(L), so w must lie on the frontier of one such open cell. In a real closed field structure,
these open cells are homeomorphic to unit boxes, and we can easily find a path from the
inside of the cell to w on the frontier.
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Proof. Consider the graph I'(f) C K2 = R*. By we have dimI'(f) =
dim(U \ {w}) = 2. Thus, by |[Proposition 2.30, dim fr(I'(f)) < 2 and hence
{w} x K  fr(L'(f)). In other words, there exists some z € K such that

(w,z) € K2\ cl(T(f)).

K2\ cl(T'(f)) is open. Viewing K? as a product topology, we know that
there exist €, > 0 such that, if D,, and D, are open discs of radius € and o
around w and z respectively, then

(Dw x D.)NT(f) = 2.

This means that |f(z) —z| > ¢ for any z € D, \ {w}, so 1/(f(z) — 2) is
bounded by 1/d§. By |Corollary 3.32) = +— 1/(f(z) — 2z) extends to a K-
differentiable function on D,,,.

This means that lim,_,,, 1/ (f(z) — 2) is well-defined. Depending on whether

lim, ., 1/ (f(z) —2) = 0, either 1/f or f is bounded near w, so
ensures that one of them extends to a K-differentiable function

near w. OJ

The non-existence of essential singularities on definable functions further
implies that:

Theorem 3.34. If f : K\ A — K is a definably K-differentiable function
for finite A C K, then f is a rational function.

To prove this, we first need the following counterpart of classical results,
established as Lemma 2.42(ii) and Theorem 2.45 in [14]. It follows easily
from [Proposition 3.33| above:

Lemma 3.35 (Poles and principle parts). Let U C K be a definable open
set and f: U\ {w} — K be a definable K -differentiable function for some
weU. If 1/f can be extended to a K-differentiable function near w such
that 1/ f(w) = 0, d.e. lim,_, f(2) = oo, then there exists a unique integer
n > 0 such that

lim f(2)(z —w)" =a

z—w
is well-defined for some a € K \ {0}.
We say that w is a pole of order —n for f.
Additionally, there exists a_y,,...,a_1 € K such that the function
a—;
fR) =) —

— (2 — w)i

extends to a K-differentiable function near w.
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Proof of [Theorem 3.3]. If w € A is a pole for f, then by we

can find a_,,...,a_q such that
n a;
D M
; (z —w)

can be extended to w as a K-differentiable function. The subtrahend is ad-
ditionally K-differentiable on K \ {w}. Therefore, let wy, ..., w; enumerate
all the poles for f, then we can define rational function

koony ;
j CL(EZ)

such that f — g extends to a K-differentiable function on the entirety of K.

Now, define h : z — f(1/z) — g(1/z), then h is K-differentiable on K \ {0}.
Again by [Lemma 3.35|, we can find b_,,...,b_; (where possibly r = 0, if the

singularity 0 is removable for h) such that

r b,i
h—;7

is K-differentiable on the entirety of K. It is definable and continuous, so it
will be bounded on any definably compact set. Additionally,

lim (h(z) - b;) = f(0) = 9(0),

i=1

so the function is bounded near infinity as well. By [Theorem 3.30},

for some constant ¢ € K. Hence
f Zg—i-c—i-Zb,lzi
i=1

is a rational function. ]

4 O-minimal structures for classical analysis

4.1 Restricted analytic functions and subanalytic sets

We now return to the standard fields R and C. Let R = (R; <, +, —, x,0,1)
be the model for reals in the language of RCF, then [Proposition 3.8 implies
that the theory for R admits elimination of quantifiers, and immediately:
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Proposition 4.1. The definable sets in R are exactly the semialgebraic sets.

We seek to obtain an expansion of R that admits a larger portion of real an-
alytic function Notably, we can make the following explicit stipulation:

Definition 4.2. We say that a function f: R™ — R is a restricted analytic
functio if f([-1,1]") € [-1,1], f = 0 on R™\ [-1,1]", and f is real

analytic on [—1,1]", i.e. f can be written as a power series that converges
on [—1,1]".

Let Ry, be an expansion of R with a new function symbol f for each restricted
analytic function; let R2 be an expansion of R,, with a new binary function
symbol D such that

Dir.y) = z/y ify#0and |z <|yl,
Y= 0 otherwise.

D is easily definable in R,,, thus the definable sets in R,, and R? coincide.
However, with the addition of D, we have the following result by Denef and
van den Dries in [I]:

Proposition 4.3. [—1, 1] has elimination of quantifiers in the theory of RE .

In other words, all definable subsets of [—1, 1] are obtainable from boolean
algebra and projection in addition to real analytic equalities and inequalities.
In fact, given the follow notions in real analysis:

Definition 4.4 (Semianalytic and subanalytic sets). A set S C R™ is called
semianalytic if, at each point x € R", there exists an open neighbourhood
U of x such that SN U is a finite union of the sets of the form

{yeU:fly)=0,a1(y) >0,...,q:(y) > 0},

where f, g1, ..., g, are analytic functions on U.

A set S C R” is called subanalytic if at each point z € R"™, there exists an
open neighbourhood U of x and a relatively compact semianalytic S’ C R™*™
such that SN U = w(S") N U, where 7 : R"* — R" is the projection onto
the first n coordinates.

Then it is proven in [I] that

Theorem 4.5. The definable subsets of [—1,1]" in RE are exactly the sub-
analytic subsets.

(12)For a holomorphic function f in C, both Re(f) and Im(f) are real analytic. Thus,

simply looking for an expanded model of reals that defines more analytic functions enables
us to apply definably complex analysis to more holomorphic functions.

(13)We use the definition in [I]. It is obvious that any analytic function with domain
restricted to a bounded box can be put into this definition with affine transformations.
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In order to deal with definable subsets of the whole of R", we identify R" as
(—1,1)" through a compactification:

Definition 4.6 (Globally subanalytic sets). Consider ¢, : R" — [—1,1]"
given by

T Tn
(T, ) = e :
onl: ) (wx%%—l \/x%+1>

We say that S C R™ is globally subanalytic if o, (S) is subanalytic.

Corollary 4.7. The definable sets in R,, or R are exactly the globally
subanalytic sets.

Proof. We simply note that ¢, is a definable bijection between R™ and

(—1,1)". Thus, by [Theorem 4.5, S C R" is definable in R? if and only

if ©,(9) is definable in R? if and only if ¢, (S) is subanalytic, if and only

an?

if S is globally subanalytic. O

It is proven by Lojasiewicz in section 16 of [12] that a semianalytic set is a
locally finite union of its connected components. Via projection, subanalytic
subsets of compact [—1, 1] must be finite unions of intervals and singletons.
This means that R,, is o-minimal.

We know from classical complex analysis that holomorphic functions are
analytic. It follows immediately that:

Proposition 4.8. If U C C s open with f : U — C being a holomorphic
function, then for any definable compact V-C U, f|,, is an analytic function
on compact domain, hence is definable in R,,.

This allows the easy transferral of local results in definable complex analysis
to arbitrary holomorphic functions. For example, we have the following proof
of the classical Liouville’s theorem using o-minimality, by Kovacsics in [10].
This is in almost the same manner as [Theorem 3.30

Theorem 4.9 (Liouville’s theorem). If f : C — C is a bounded entire
function, then f is a constant function.

Proof. Let M denote an upper bound for |f|. Given some w € C\ {0}, for
any circle

Cr={z€C:|z|=r}

with radius 7 > |w|, flc, (e, 1S definable in R,y by [Proposition 4.8 We
can consider h : C, U Int(C,) — C given by

f(z) = f(0)

if 2 # 0,
1'(0) otherwise.
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h is then definable and continuous on C, U Int(C,) and holomorphic on

Int(C;) \ {0}. We can apply and claim that
[/ (w) = (Ol () = f(w)| _ 2M

|h(w)| = | < max < :
|2 2€Cr r r

Since 2M/r — 0 as r — oo, we can conclude that f(z) — f(w) = 0 for any
w € C\ {0}, i.e. f is constant on C. O

4.2 O-minimal models for the exponential function

R., is still a somewhat restricted model, due to the following fact identified
in [2]:

Fact 7 (Polynomial growth). Consider any globally subanalytic function f :
(0,00) — R. There is some d € N, a > 0 such that |f(t)] < t? for any t > a.

This directly means that the real exponential function x +— e* cannot be
definable in R,,,.

It is due to results by Wilkie, Khovanskii, van den Dries and Miller that
larger o-minimal extensions of R can contain the real exponential function.
Wilkie proved in [20] that

Proposition 4.10. The theory of the structure Reyx, = <]R; exp>, where exp
1s the usual exponential function x — e* on R, is model complete.

In other worlds, any first-order formula is equivalent to an existential formula
in the theory, and all definable sets will correspondingly be projections of
finite unions of sets given by equalities and inequalities involving arithmetic
operations and the exponential function only.

Noticeably, if we have an equality (or respectively an inequality) of the form
P(exp(Q(x))) = 0, then we can introduce an additional variable y, so that
the roots of the equality are exactly the projection of

{(z,y) : Plexp(y)) =y — Q(z) = 0}

onto the first coordinate. Therefore, we can recursively eliminate all ex-
pressions where a complex formula occurs inside the exponential, and all
definable sets in Rey, can thus be given by equalities and inequalities only
involving the form

P(x1,...,xy,exp(xy),...,exp(x,)),

where P € R[Xy,...,X,,Y1,...,Y,] is a polynomial. These form Khovan-
skii’s Pfaffian systems for the Pfaffian chai (exp):

(14 Strictly speaking, the chain needed is (exp(z1),...,exp(z,)) here.
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Definition 4.11 (Pfaffian chains). We say that a finite sequence of real an-
alytic functions (fi, ..., fx) on n variables form a Pfaffian chain if for all 1 <
i <mn,1<j <k there exists a polynomial P;; € R[Xy,...,X,,Y,...,Y]]
such that

af;

a!)ﬁ'i

:-Pij(xla"'axnvflv"‘vfj)‘

A Pfaffian system for the chain is then a system of equations

Ql(xly"'axnafly"'afk):"':Qm(xlv"'7xn7f17"'7fk) =0
where Q1,...,Q, € R[Xy,..., X, Y, ..., Y, are polynomials.
Khovanskii proved as Theorem 4 in [§] that:

Theorem 4.12. Let a set X C R"™ be defined by a Pfaffian system of equa-
tions. Then the number of connected components of X is finite.

This immediately implies that the definable subsets of R in Ry, are finite
unions of intervals and singletons and thus R, is o-minimal.

Extending Wilkie’s results, van den Dries and Miller also proved in [4] that:
Theorem 4.13. Rap exp = (Ran; exp) is model complete and o-minimal.

In this expansion, the restriction of the complex exponential function z — e*
is definable in any horizontal strip {z € C: a < Im(z) < b}: we can simply

write '
e* = eRelR)im(®) — oRe(2) (cos(Im(2)) + isin(Im(z))),

where sin and cos are definable in R,, on the bounded interval (a,b).

This is in fact the best one can do with the complex exponential function in
any o-minimal structure, due to the following proof in [15]:

Proposition 4.14. If z +— e is definable in an o-minimal expansion A of
R on a definable set U C R, then {Im(z) : z € U} is bounded on R.

Proof. Due to results in [I8], we can always move into to a Pfaffian closure
of 2, where the real exponential function is definable.

Let S = {Im(z):2€ U} C R, then we can choose some definabld™®)| z :
S — U such that Im(z(r)) = r for any r € S. Now, let f: R+ S — C be
given by

f(I + ZT) _ ex‘ez(r)e— Re(z(r)) _ ear—&-ir.

f will be holomorphic on R + ¢5.

If S is unbounded, since it is definable, we can find some a € R such that
either (a,00) C S or (—oo,a) C S. Either way,

{2kmie S:keZ} C f(1)

(15) An o-minimal expansion of R has definable choice, as proven in chapter 6 of van den
Dries’ book [3].
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will be infinite, contradicting [Corollary 3.29 (Identity theorem)| O

Despite this, we are still able to perform a large portion of classical complex
analysis in o-minimal structures. For example, we can mention some results
by Kaiser on Riemann mappings:

Let D = {z € C:|z| < 1} denote the unit disc in C and let P denote a
polygon with vertices wy,...,w, in counter-clockwise order. If the inter-
nal angle of bd(P) at each w; is given by ma; where a; € (0,2), then for
bi,...,b, € bd(D), also in counter-clockwise order, the unique biholomor-
phism f: D — P, whose continuous extension to bd(D) maps each b; to w,
is given by the Schwarz-Christoffel map

Z) = Cp /OZH (5 — bj)aj_l dé- + c1.
j=1

To begin, if we bound away from any b;, then the integrand will be holo-
morphic, thus the integral will be analytic and hence definable in R,, on the
bounded domain D. Kaiser showed additionally in [6] that:

Proposition 4.15. For each 1 < j <n,

o ifa; € Q, then f above is definable in R, near b,
o if aj € Q, then f above is definable in RE, near b;, whz’c includes

a function x — x* for each a € R.

Proof. The function [, 2 (E— b;)* " is holomorphic near b;, so we can write
it as a convergent power series

H( . b a;—1 Z am
i#]
Then

I b ae - | Zam )"
1

=

= (= b))% Z D (¢ by

m Qs
m=0 + J

where the summation is analytic near b;. The function is thus definable in
R., if a; € Q, and definable in RE otherwise. O

Thus, a Riemann mapping f : D — P must be definable in RE at least. As
Theorem 3.3 in [7], Kaiser is also able to construct some o-minimal structure
Ro and prove in general that:

(16)This is a reduct of R,y exp because with exp we also have log, and we can write

x® = exp(alog(x)).
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Theorem 4.16. Let Q) C C be a bounded, semianalytic and simply connected
domain, such that at each singular boundary point x € bd(Q2), the angle
made by bd(Q) at x is an irrational multiple of m, then a Riemann mapping
f:Q — D s definable in Rog.

5 Conclusion

In classical real and complex analysis, one very often looks at polynomials,
rational functions and other naturally useful entities with tame topologi-
cal properties. This essay examined o-minimality from model theory as a
possible explanation. Following van den Dries, Peterzil and Starchenko, I
explained cell decomposition on o-minimal structures with its exciting impli-
cations, and discussed the large portion of complex analysis one can recover
and possibly simplify when only definable sets and functions are concerned.

We are able to extend such technique to many interesting complex func-
tions by considering the o-minimal definability of the exponential and other
analytic functions on bounded domains. This demonstrates the dense occur-
rences of o-minimal (hence topologically tame) classes of entities in classical
analysis and the potential significance of o-minimal theories themselves, even
for someone without much model-theoretical interest.
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