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1 Introduction

O-minimal theories are model-theoretical accounts of densely ordered al-
gebraic structures where definable sets consist of finitely many (definably)
connected components. In o-minimal structures, one can identify a natural
topology as a nice candidate for Grothendieck’s conception of tame topol-
ogy in section 5 of [5]. This essay will discuss the topological properties of
o-minimal spaces and apply them to a “complex-like” space(1) K:

In section 2, I will follow van den Dries’ book [3] to provide a formal definition
for o-minimal structures and the topology on them. I will work towards the
central results on o-minimal spaces, namely:

Theorem 2.16. Given an o-minimal structure A = ⟨A;<, . . .⟩ and a finite
collection of definable subsets U1, . . . , Uk ⊆ An, there exists a cell decompo-
sition S of An that partitions each Ui.

In section 3, I will utilise Peterzil and Starchenko’s approach in [14] and
explain how o-minimal properties can be used to establish and possibly
strengthen classical complex analysis results on the algebraic closure of ar-
bitrary real closed fields.

Finally, in section 4, I will discuss to what extent the theory of definable
sets and functions is useful in classical analysis. Based on some excellent
summary of results in this area in [16], I will examine analytic functions
that are made definable in various o-minimal expansions of R.

2 Properties of o-minimal structures

2.1 Preliminaries

In the entirety of this essay I will work within the model theory of first-order
predicate logic with equality (2), where expressions consist of ¬, ∧, ∨, →, ↔,
∀, ∃, =, ⊤, ⊥ in addition to variables and the non-logical symbols; we admit
predicate and functional symbols in the language, with propositional symbols
realised as 0-place predicates and constants realised as 0-place functions.

Given a first-order language L, we use Form(L) to denote the set of all well-
formed formulae in the language. We denote a formula as φ(x1, . . . , xn) ∈
Form(L), where Free(φ) ⊆ {x1, . . . , xn} is the set of free variables(3) in φ.

A structure in the language is denote as A = ⟨A; . . .⟩, where A is the universe.

(1)By “complex-like”, we mean K = R(i) as the algebraic closure of some arbitrary real
closed field R.

(2)In this essay we will work mostly with specific models, so we will not bother with
distinguishing equality symbols in a model and the meta-language.

(3)Here x1, . . . , xn need not all appear in φ.
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For a formula φ(x1, . . . , xn) ∈ Form(L), we say that the set

φA = {(a1, . . . , an) ∈ An : A |= φ (a1, . . . , an)}

is defined by φ.

2.2 O-minimal structures

Definition 2.1. Given a structure A = ⟨A; . . .⟩ in a first-order language L
and a subset C ⊆ A, the extended structure AC with constants from C lives
in the language expansion LC with additional symbols ca for each a ∈ C.
For each a ∈ C, AC assigns the value a to constant symbol ca.

In practice, we usually write each constant symbol ca as a directly, when
there is no ambiguity. For example, with the structure of reals R = ⟨R; . . .⟩,
we view x+ 1.5 = 3 as a valid formula in the extended structure RR, where
1.5 and 3 represent corresponding constant symbols.

Definition 2.2 (Definable sets). Given a structure A = ⟨A; . . .⟩ in a lan-
guage L and some n ∈ N, we denote the definable subsets of An as

Defn(A) = {φA : φ(x1, . . . , xn) ∈ Form(L)}.

We call Def(A) =
⋃

i Defi(A) the definable sets in the structure A.

For a function f : U → Am on some U ⊆ An, we say that f is definable if
its graph

Γ(f) = {(x, f(x)) : x ∈ U} ⊆ An+m

is a definable set.

We will be mainly concerned with definability with constants in this essay.
Thus, from here onwards, when we say that a set/function is definable in a
structure A = ⟨A; . . .⟩, we mean definability with constants, i.e. in AA.

Definition 2.3 (O-minimality). Consider a structure A = ⟨A;<, . . .⟩, on
which < defines a dense linear order without endpoints. Extending A to
endpoints −∞,∞, we say that a subset I ⊆ A is an (open) interval if there
exists a < b ∈ A∞ = A ∪ {−∞,∞} such that

I = (a, b) = {c ∈ A : a < c < b} .

We say that A is o-minimal if the definable subsets of A, namely Def1(AA),
consist only of finite unions of singletons and intervals.

The following, for example, could be an immediate reason why the o-minimal
condition can be useful:

Proposition 2.4 (Dedekind completeness for definable sets). Given an o-
minimal structure A = ⟨A;<, . . .⟩ and a non-empty definable set U ⊆ A,
then sup(U) and inf(U) exist in A ∪ {−∞,∞}.
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Proof. By o-minimality, we can write

U =

(
k⋃

i=1

(pi, qi)

)
∪

(
ℓ⋃

j=1

{rj}

)
where each (pi, qi) is an interval and each rj ∈ A is an element. Obviously

sup(U) = max({sup (pi, qi) : 1 ≤ i ≤ k} ∪ {sup {rj} : 1 ≤ j ≤ ℓ})

= max({qi : 1 ≤ i ≤ k} ∪ {rj : 1 ≤ j ≤ ℓ}),

inf(U) = min({inf (pi, qi) : 1 ≤ i ≤ k} ∪ {inf {rj} : 1 ≤ j ≤ ℓ})

= min({pi : 1 ≤ i ≤ k} ∪ {rj : 1 ≤ j ≤ ℓ})

both exist in A ∪ {−∞,∞}.

2.3 Interval topology

Definition 2.5 (Interval topology). Given a structure A = ⟨A;<, . . .⟩, it is
easy to verify that the (open) intervals on A form a basis for a topology. We
call this the interval topology on A.

We say that a subset B ⊆ An is a box if there exist intervals I1, . . . , In ⊆ A
such that B =

∏
i Ii. The boxes form a basis for the induced product

topology on An. We say that this is the interval topology on An.

This topology is nice on an o-minimal structure. As Lemma 3.3(ii) in chapter
1 of van den Dries’ book [3], any 1-dimensional definable set decomposes into
finitely many components:

Proposition 2.6. Consider an o-minimal structure A = ⟨A;<, . . .⟩ and a
definable set U ⊆ A. The boundary of U under the interval topology,

bd(U) = cl(U) \ int(U)

i.e. its closure minus its interior, must be finite. Additionally, if we enu-
merate bd(U) ∪ {−∞,∞} as

−∞ = a0 < a1 < · · · < am+1 = ∞,

then for each 0 ≤ i ≤ m, the interval (ai, ai+1) lies either entirely in U or
entirely in A \ U .

However, these components may not be connected in the classical sense.
For example, as we will later show in Theorem 3.9, the set of algebraic
numbers Ralg ⊆ R forms an o-minimal structure. However, intervals in
Ralg are disconnected due to the “gaps” of transcendental numbers. This
motivates the following stipulation:

Definition 2.7. Given a structure A = ⟨A;<, . . .⟩ with the interval topology,
we say that a definable set X ⊆ An is definably disconnected if there exists
disjoint non-empty definable sets U, V ⊆ X that are open in X, with X =
U ∪ V . Otherwise, we say that it is definably connected.
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Due to Proposition 2.4, we can now replicate exactly the proof that intervals
in R are connected, and prove that:

Proposition 2.8. Consider an o-minimal structure A = ⟨A;<, . . .⟩. For
any a < b ∈ A, the interval (a, b) is definably connected.

2.4 Cell decomposition

Definition 2.9. Given a structure A = ⟨A;<, . . .⟩ and any U ⊂ An, let C(U)
denote the set of definable continuous functions U → A; we additionally
write

C∞(U) = C(U) ∪ {−∞,∞} ,
where −∞,∞ refer to constant functions from U to A ∪ {−∞,∞}.

A natural partial ordering on C∞(U) exists such that f1 < f2 ∈ C∞(U) if
for any x ∈ U , f1(x) < f2(x).

Definition 2.10 (Cells). For a finite sequence i1, . . . , in ∈ {0, 1}, we define
an (i1, . . . , in)-cell on a structure A = ⟨A;<, . . .⟩ recursively:

• A (0)-cell is a singleton in A; a (1)-cell is a non-empty (open) interval
in A.

• A subset U ⊆ An is an (i1, . . . , in−1, 0)-cell if there is an (i1, . . . , in−1)-
cell U0 ⊆ An−1 and a continuous definable function f ∈ C(U0) such
that

U = Γ(f) = {(x, f(x)) : x ∈ U0}
is the graph of f ; U ⊆ An is an (i1, . . . , in−1, 1)-cell if there is an
(i1, . . . , in−1)-cell U0 ⊆ An−1 and continuous definable functions f <
g ∈ C∞(U0) such that

U = {(x, y) ∈ U0 × A : f(x) < y < g(x)} .

Finally, we say that any U ⊆ An is a cell if it is a (i1, . . . , in)-cell for some
i1, . . . , in ∈ {0, 1}.

Also, since both graphs of functions and the “spaces” between two functions
are easily formalised in first-order logic, cells are trivially definable.

They can additionally be used as a higher-dimensional analog of intervals
and singletons, due to the following obvious, nice properties:

Proposition 2.11. Given an o-minimal structure A = ⟨A;<, . . .⟩, a cell
U ⊆ An is definably connected.

Proposition 2.12. A cell is open if and only if it is a (1, 1, . . . , 1)-cell; all
other cells are nowhere dense in An.

Corollary 2.13. Any (i1, . . . , in)-cell U is homeomorphic to an open cell
under some projection map π(U) : An → Ar, simply projecting onto the
coordinates where ik = 1. We have r = n if and only if U is open.
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In later uses we shall refer to this as the natural homeomorphism for U .

Corollary 2.14. If a non-empty definable open subset U ⊆ An is written as
a finite union of cells, U =

⋃
S, then S contains an open cell.

Now, we can proceed to establish the central tameness result for the interval
topology on an o-minimal structure:

Definition 2.15 (Cell decomposition). On a structure A = ⟨A;<, . . .⟩, con-
sider a partition of An into a finite set S of disjoint cells, such that

⋃
S = An.

We define the condition for S to be a cell decomposition of An recursively:

• Any finite partition of A into disjoint cells, i.e. singletons and intervals,
is a cell decomposition of A.

• A finite partition S of An into disjoint cells is a cell decomposition of
An if

π(S) = {π(U) : U ∈ S}
is a cell decomposition of An−1, where π is the projection onto the first
(n− 1) coordinates.

Theorem 2.16 (Cell decomposition theorem). Given an o-minimal struc-
ture A = ⟨A;<, . . .⟩ and a finite collection of definable subsets U1, . . . , Uk ⊆
An, there exists a cell decomposition S of An that partitions each Ui, i.e.
such that each Ui =

⋃
Si for some Si ⊆ S.

The proof of this theorem is lengthy and technical, so we are going to provide
here just a sketch of van den Dries’ inductive proof in chapter 3 of [3].

To begin, notice that the 1-dimensional case is simply covered by Propo-
sition 2.6. In the inductive case, van den Dries made use of the following
definitions:

Definition 2.17. We say that a set Y ⊆ An+1 is finite over An if for each
x ∈ An the fibre Yx = {y ∈ A : (x, y) ∈ Y } is finite.

Definition 2.18. Given a structure A = ⟨A;<, . . .⟩ and a set Y ⊆ An+1

that is finite over An, we say that a box B ⊆ An is Y -good if for each
(x, y) ∈ Y ∩ (B × A), there exists an interval I ⊆ A containing y such that

Y ∩ (B × I) = Γ(f)

is the graph of some continuous functions f ∈ C(B). We say that a point
x ∈ An is Y -good if it is contained in some Y -good box.

Directly using the definitions, van den Dries quickly proved the following
result, numbered claim 2 in section 2.13 of the chapter:

Lemma 2.19. Given a structure A = ⟨A;<, . . .⟩. Consider a definable
subset Y ⊆ An+1 that is finite over An. If a definably connected subset
U ⊆ An consists only of Y -good points, then we can decompose

Y ∩ (U × A) = Γ(f1) ∪ · · · ∪ Γ(fk)
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into graphs of definable continuous functions f1 < · · · < fk ∈ C(U).

More importantly, van den Dries also proved the next, more complicated
lemma, numbered claim 3 in the same section:

Lemma 2.20. Given an o-minimal structure A = ⟨A;<, . . .⟩, suppose that
Theorem 2.16 (Cell decomposition theorem) works on Ak for any k ≤ n and
a definable subset Y ⊆ An+1 is finite over An, then any box in An contains
a Y -good point.

The 1-dimensional case of this lemma is essentially proposition 1.8 in the
same chapter, derived from the monotonicity theorem (Theorem 3.1.2 in
van den Dries’ book):

Theorem 2.21 (Monotonicity theorem). Given an o-minimal structure A =
⟨A;<, . . .⟩, let f : (a, b) → A be a definable function on the interval (a, b) ⊆
A. Then there are points

a = a0 < a1 < · · · < ak < ak+1 = b,

such that for each 0 ≤ i ≤ k, the restriction f |(ai,ai+1)
is either constant or

strictly monotone and continuous.

The higher-dimensional cases, instead, are derived from the following result
on the decomposition of functions. This itself is established via another
induction by looking at parts of the function that are continuous in all com-
ponents (and monotone in one of them):

Lemma 2.22. Under the same assumptions as Lemma 2.20, for a definable
function f : U → A on some definable set U ⊆ An, there exists a cell
decomposition S of An that partitions U , such that for each cell V ∈ S
contained in U , the restriction f |V is continuous.

Now, the concept of Y -goodness is expressible in first-order logic, so for any
definable Y ⊆ An+1 we have a definable set

R = {x ∈ An : x is Y -good} .

Considering the open cells in some cell decomposition that partitions R, then
Lemma 2.19 and Lemma 2.20 together imply the following:

Corollary 2.23. Under the same assumptions as Lemma 2.20, if a definable
subset Y ⊆ An+1 is finite over An, then there exists a cell decomposition S
of An such that for each cell U ∈ S, we can decompose

Y ∩ (U × A) = Γ(f1) ∪ · · · ∪ Γ(fk)

into graphs of continuous functions f1 < · · · < fk ∈ C(U).

Finally, for arbitrary subsets U1, . . . , Uk ⊆ An, we define

bdn(Ui) =
{

(x, y) : x ∈ An−1, y ∈ bd((Ui)x)
}
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where bd((Ui)x) is the boundary of the fibre (Ui)x ⊆ A as defined in Propo-
sition 2.6. Obviously, each bdn(Ui) is finite over An−1, and Corollary 2.23
applies that each of them decomposes into graphs of continuous functions.
This can be used as a basis for constructing the desired cell decomposition
of An, concluding the proof for the inductive case of Theorem 2.16 (Cell
decomposition theorem).

We shall end this subsection by looking at two important corollaries of The-
orem 2.16:

Corollary 2.24 (Uniform finiteness property). Given an o-minimal struc-
ture A = ⟨A;<, . . .⟩ and a definable subset Y ⊆ An+1 that is finite over An,
Y must be uniformly finite, i.e. there exists integer n ∈ N such that for all
x ∈ An, |Yx| ≤ n.

Proof. Since we have proven Theorem 2.16, we can now conclude that Corol-
lary 2.23 holds for any dimension n. Let S be such a cell decomposition of
An, then for each cell U ∈ S there exists kU ∈ N such that

Y ∩ (U × A) = Γ(f1) ∪ · · · ∪ Γ(fkU ).

Obviously, for any x ∈ An,

|Yx| ≤ max
U∈S

kU .

Corollary 2.25. Given an o-minimal structure A = ⟨A;<, . . .⟩ and a de-
finable function f : U → Am on some definable set U ⊆ An, there exists a
cell decomposition S of An that partitions U , such that for each cell V ∈ S
contained in U , the restriction f |V is continuous.

Proof. By Theorem 2.16 we can find a cell decomposition S that partitions
the graph Γ(f) ⊆ An+m. Let πk : An+m → Ak denote the projection onto
the first k coordinates. Obviously,

πn(S) = {πn(V ) : V ∈ S}

is a cell decomposition of An, and for each V ′ ∈ πn(S), we can see via easy
induction that Γ(f |V ′) is an (i1, . . . , in, 0, . . . , 0)-cell for some i1, . . . , in ∈
{0, 1}. In other words, f |V ′ is a continuous function, and πn(S) is the de-
composition we need.

2.5 Dimension

One of the immediate consequences of Theorem 2.16 (Cell decomposition
theorem) is that we can assign a dimension to every definable set:

Definition 2.26. Given an o-minimal structure A = ⟨A;<, . . .⟩, the dimen-
sion of a definable set U ⊆ An is given by

dimU = max{i1 + · · · + in : V is an (i1, . . . , in)-cell, V ⊆ U}.
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We additionally specify that dim∅ = −∞.

The use of cells here may seem ad-hoc, but van den Dries demonstrated in
chapter 4 of [3] that it has the desirable properties:

Proposition 2.27. For an (i1, . . . , in)-cell U ⊆ An, dimU = i1 + · · · + in.

Proof. Since U ⊆ U trivially, we directly have dimU ≥ i1 + · · · + in.

For the other direction, suppose that V ⊆ U is a (j1, . . . , jn)-cell. Let πk :
An → Ak denote the projection onto the first k coordinates. For each 1 ≤
k ≤ n, πk(V ) ⊆ πk(U) are (j1, . . . , jk)- and (i1, . . . , ik)-cells respectively. It
is then obvious that ik = 0 implies jk = 0 because in this case, the fibres
(πk(V ))x ⊆ (πk(U))x must be singletons or ∅ for each x ∈ Ak−1.

In other words, each jk ≤ ik, i.e. j1 + · · · + jn ≤ i1 + · · · + in. We can thus
conclude that dimU = i1 + · · · + in.

Particularly, the natural homeomorphism of a cell U ⊆ An can now be
written as π(U) : An → AdimU .

Proposition 2.28. If we write a non-empty definable set U ⊆ An as a finite

union of cells U =
⋃

j Vj where each Vj is an
(
i
(j)
1 , . . . , i

(j)
n

)
-cell, then

dimU = max
j

dimVj = max
j

(
i
(j)
1 + · · · + i(j)n

)
.

Proof. Since each Vj ⊆ U trivially, we directly have

dimU ≥ max
j

dimVj.

For the other direction, consider an (ℓ1, . . . , ℓn)-cell W ⊆ U . We find by
Theorem 2.16 (Cell decomposition theorem) a decomposition S of An that
partitions W and each Vj. We can write W =

⋃
S ′ for some finite S ′ ⊆ S.

Consider the natural homeomorphism π(W ) : An → AdimW . For each W ′ ∈
S ′, we have W ′ ⊆ W , so π(W )(W

′) must also be a cell in AdimW with

π(W )(W ) =
⋃

W ′∈S′

π(W )(W
′).

By Proposition 2.12 and Corollary 2.14, S ′ must contain some (ℓ′1, . . . , ℓ
′
n)-

cell W0 such that π(W )(W0) is an open cell, i.e. a (1, . . . , 1)-cell in AdimW .
W0 must exactly be an (ℓ1, . . . , ℓn)-cell, and W0 ⊆ Vj for some j, i.e. ℓ1 +
· · · + ℓn ≤ dimVj. It follows that dimU ≤ maxj dimVj.

Combining both directions and using Proposition 2.27, we have

dimU = max
j

dimVj = max
j

(
i
(j)
1 + · · · + i(j)n

)
.
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This is then an immediate corollary:

Corollary 2.29. For definable sets U, V ⊆ An,

dim(U ∪ V ) = max{dimU, dimV }.

Also, in preparation for the next subsection, we prove the following propo-
sition:

Proposition 2.30. Let U ⊆ An be a non-empty definable set. Then

dim fr(U) < dimU,

where the frontier fr(U) = cl(U) \ U .

To prove this, we first cite some technical results(4) from [3]:

Fact 1. Suppose that U ⊆ An, V ⊆ Am are definable sets with f : U → V
being a definable bijection. Then dimU = dimV .

Fact 2. Let U ∈ An+m be a definable set. For each d ∈ {−∞, 0, . . . ,m}, let

U[d] = {x ∈ An : dimUx = d} .

Then each U[d] ⊆ An is definable, with

dimU = max
d

(
dimU[d] + d

)
.

Fact 3. Let U ⊆ An+1 be a non-empty definable set. Then the set

U ′ = {x ∈ A : cl(Ux) ̸= (cl(U))x}

is finite.

Proof of Proposition 2.30. We prove this by induction: the base case where
n = 1 is trivial, because for U ⊆ A, fr(U) ⊆ bd(U) is finite by Proposi-
tion 2.6.

For the inductive case, first suppose that dimU = 0, i.e. U is finite. Then
fr(U) = ∅ trivially, so the proposition holds. When dimU > 0, we consider
definable bijections φi : (x1, . . . , xn) 7→ (xi, x1, . . . , xi−1, xi+1, . . . , xn) for any
1 ≤ i ≤ n. For each φi, let

Pi = {x ∈ A : cl((φi(U))x) ̸= (cl(φi(U)))x} ⊆ A,

which is finite by Fact 3 and write P c
i = A \ Pi. Then,

cl(φi(U)) ∩
(
P c
i × An−1

)
=
⋃
x∈P c

i

({x} × cl((φi(U))x)) .

(4)The proofs for these results are rather lengthy and hence omitted here. They can
be found in chapter 4 of van den Dries’ book [3]: Fact 1 as Proposition 1.3(i), Fact 2 as
Corollary 4.1.6(i), and Fact 3 as Lemma 4.1.7.
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Now, by inductive hypothesis, dim fr((φi(U))x) < dim (φi(U))x. For each
d1 < d2 ∈ {−∞, 0, . . . , n− 1}, let

(φi(U))[d1,d2] = {x ∈ P c
i : dim fr((φi(U))x) = d1, dim (φi(U))x = d2} .

By Fact 2 we can compute that

dimφi

(
fr(U) ∩

(
Ai−1 × P c

i × An−i
))

= dim
(
fr(φi(U)) ∩

(
P c
i × An−1

))
= dim

⋃
x∈P c

i

({x} × fr((φi(U))x))

= max
d1,d2

(
dim (φi(U))[d1,d2] + d1

)
< max

d1,d2

(
dim (φi(U))[d1,d2] + d2

)
= dim

(
φi(U) ∩

(
P c
i × An−1

))
= dimφi

(
U ∩

(
Ai−1 × P c

i × An−i
))
.

By Fact 1, definable bijections preserve dimension, so indeed

dim
(
fr(U) ∩

(
Ai−1 × P c

i × An−i
))
< dim

(
U ∩

(
Ai−1 × P c

i × An−i
))
.

Finally, notice that

An = (P1 × · · · × Pn) ∪
⋃
i

(
Ai−1 × P c

i × An−i
)

where P1 × · · · × Pn is finite. By Corollary 2.29,

dim fr(U) = max

{
dim(fr(U) ∩ (P1 × · · · × Pn));

dim
(
fr(U) ∩

(
Ai−1 × P c

i × An−i
))

for each 1 ≤ i ≤ n

}
< max

{
dim

(
U ∩

(
Ai−1 × P c

i × An−i
))

: 1 ≤ i ≤ n
}

= dimU.

2.6 The stratification theorem

The analysis of dimensions allows us to establish o-minimal structures as
a candidate for Grothendieck’s tame topology in the sense of topological
stratifications:

Definition 2.31. Given a structure A = ⟨A;<, . . .⟩ with the interval topol-
ogy, we say that some subset U ⊆ An is a (topological) k-manifold (5) if, in
the sub-topology on U , every element x ∈ U lies in a neighbourhood V ⊆ U
that is homeomorphic to a box B ⊆ Ak.

(5)There is no need to enforce additionally that U is Hausdorff, because An is trivially
Hausdorff under the interval topology, given that the ordering < is dense.

10



The condition of bing a k-manifold is preserved under homeomorphisms, or
in particular, the natural homeomorphism π(U) for a cell U . We thus have:

Proposition 2.32. Each cell U ⊆ An is a (dimU)-manifold.

Definition 2.33 (Stratification). We say that a closed set in a topological
space, U ⊆ T , has a stratification if it has a filtration, i.e. an increasing chain
of subsets

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xk = U,

such that for each 0 ≤ i ≤ k, Xi \ Xi−1 is a i-manifold with frontier
fr(Xi \Xi−1) ⊆ Xi−1.

Theorem 2.34 (Stratification theorem). Given an o-minimal structure A =
⟨A;<, . . .⟩, any definable closed set U ⊆ An has a stratification.

Proof. We prove by induction on the dimension of U :

For the base case where U = ∅ or dimU = 0, i.e. U is finite, the statement
is trivial.

For the inductive case, by Theorem 2.16 (Cell decomposition theorem) we
have a cell decomposition S of An that partitions U and by Proposition 2.28
there exists a cell V ⊆ U in S such that dimV = dimU .

For each such cell V , we write intU(V ) for its interior in the sub-topology
on U . Now let S ′ be a refinement of S, i.e. a cell decomposition of An that
partitions any cell in S as well as intU(V ) for any cell V ∈ S, V ⊆ U such that
dimV = dimU . For any cell V ′ ∈ S ′, V ′ ⊆ U such that dimV ′ = dimU , we
know that V ′ ⊆ V ⊆ U for some cell V ∈ U and

dimV ′ = dimV = dimU.

Additionally, V \ intU(V ) ⊆ fr(intU(V )), so by Proposition 2.30

dim(V \ intU(V )) ≤ dim fr(intU(V )) < dim intU(V ) ≤ dimV = dimV ′,

i.e. V ′ ̸⊆ V \ intU(V ). We must have V ′ ⊆ intU(V ).

Finally, consider the natural homeomorphism π(V ). Since dimV ′ = dimV ,
π(V )(V

′) ⊆ π(V )(V ) are obviously both open cells in AdimV , so V ′ is open in
V and thus open in U .

Now, we can set XdimU = U and

XdimU−1 =
⋃

{V ′ ∈ S ′ : V ′ ⊆ U, dimV ′ < dimU} .

Then XdimU \ XdimU−1 is a finite union of cells V ′ ∈ S, V ′ ⊆ U such that
V ′ is open in U and dimV ′ = dimU . By Proposition 2.32, each such V ′ is
a (dimU)-manifold. Since the interval topology is naturally Hausdorff, the
finite union of (dimU)-manifolds open in U is again a (dimU)-manifold. This
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implies XdimU−1 is closed, hence applying the inductive hypothesis yields the
remainder of the filtration:

∅ = X−1 ⊆ X0 ⊆ · · · ⊆ XdimU−1.

3 Definable complex analysis

3.1 Real closed fields

One of the most important example of an o-minimal structure is the ordered
field of reals ⟨R;<,+,−,×, 0, 1⟩. In the second half of this essay, we shall
apply the properties of o-minimality to complex analysis by viewing C ∼= R2

as a real vector space.

Before we start, do note that, due to Corollary 2.24:

Proposition 3.1. O-minimality is preserved under elementary equivalence.

This is proven as Theorem 0.2 in [9]. As a result, we can work with a
complete first-order axiomatisation of R instead, and our results will also
apply to non-standard real and complex fields. Namely, we consider an
arbitrary real closed field:

Definition 3.2 (Real closed fields). We say that a field F is formally real
if −1 is not a sum of squares in F . We say that a formally real field is real
closed if it has no proper algebraic extensions that are also formally real.

We additionally say that a field extension L | F is a real closure if L is
algebraic over F and real closed. As proven in chapter XI of Serge Lang’s
Algebra [11], the real closure of an ordered formally real field is unique up
to order-preserving isomorphisms.

Of course, the widely-used conditions in Definition 3.2 are not readily ax-
iomatisable in first-order logic. We consider an equivalent definition:

Definition 3.3 (Ordered fields). We say that ⟨F ;<,+,−,×, 0, 1⟩ is an or-
dered field if ⟨F ; +,−,×, 0, 1⟩ is a field, and < is a total ordering on F
satisfying

• for any a, b, c ∈ F such that a < b, we have a+ c < b+ c;

• for any a, b ∈ F such that 0 < a, 0 < b, we have 0 < ab.

Definition 3.4. The first-order theory of (ordered) real closed fields, de-
noted RCF, is axiomatised such that ⟨F ;<,+,−,×, 0, 1⟩ ⊨ RCF if and only
if

• ⟨F ;<,+,−,×, 0, 1⟩ is an ordered field;

• for any a ∈ F such that a > 0, there exists b ∈ F such that b2 = a;

• any polynomial of odd degree in F [X] has a root in F .
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For some ⟨F ;<,+,−,×, 0, 1⟩ ⊨ RCF, it is easy to observe that every element
in the field extension F

(√
−1
)

has a square root: namely, for any element

a+ b
√
−1 ∈ F

(√
−1
)
, we have√a+

√
a2 + b2

2
+

√
−a+

√
a2 + b2

2
·
√
−1

2

= a+ b
√
−1.

With fundamentally the same proof via Galois theory of C being algebraically
closed, this means that F

(√
−1
)

is algebraically closed. It follows that our
first-order axiomatisation RCF is equivalent to the conditions for real closed
fields:

Proposition 3.5. ⟨F ;<,+,−,×, 0, 1⟩ ⊨ RCF(6) if and only if F is a real
closed field under + and ×.

Proof. The backward direction is trivial. For the forward direction, the
axioms of an ordered field immediately implies that squares are non-negative,
so −1 < 0 cannot be a sum of squares, i.e. F is formally real.

Now, F
(√

−1
)

is algebraically closed, so any algebraic extension L ≥ F
must satisfy

F ≤ L ≤ F
(√

−1
)
.

Here F
(√

−1
)

is an extension of degree 2, which is not formally real. Thus
the only algebraic extension of F that is formally real is F itself. F is real
closed.

We now work towards proving that ⟨F ;<,+,−,×, 0, 1⟩ is an o-minimal struc-
ture:

Lemma 3.6 (Intermediate value theorem). Given some real closed field F
and a polynomial f(X) ∈ F [X] such that f(a) > 0, f(b) < 0 for a, b ∈ F .
Then there exists c between a and b such that f(c) = 0.

Proof. F
(√

−1
)

is algebraically closed, so f must be factorisable into linear
and quadratic factors. Consider an irreducible quadratic factor

X2 + pX + q =
(
X +

p

2

)2
+ q − p2

4
.

It cannot have a root in F , so we must have (X + p/2)2 ≥ 0, q − p2/4 > 0,
i.e. the sign of a quadratic factor cannot change. Therefore, there must exist
a linear factor (X − c) of f such that (a− c), (b− c) are of different signs.
Then c is a root of f that lies between a and b.

(6)Here the ordering < is naturally given by the property that a < b if and only if
b− a = c2 for some c ∈ F \ {0}.
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Lemma 3.7. Consider a real closed field F = ⟨F ;<,+,−,×, 0, 1⟩ and a
real closed subfield K ⊆ F . Let L = {<,+,−,×, 0, 1} denote the first-order
language for real closed fields and LK its expansion with constants from K.
For any quantifier-free sentence φ(x) ∈ Form(LK) with only one variable,
we can write

φF =

(
k⋃

i=1

(pi, qi)

)
∪

(
ℓ⋃

j=1

{rj}

)
⊆ Def1(FK)

as a finite union of intervals and singletons, where pi, qi, rj ∈ K.

Proof. The propositional connectives ¬, ∧, ∨, →, ↔ trivially corresponds
to set operations like complements, intersections and unions. Therefore, it
suffices that we prove the lemma for atomic formulae, i.e. f(X) = g(X) or
f(X) < g(X) where f, g ∈ K[X] are polynomials.

By the fundamental theorem of algebra, f − g has finitely many roots in F .
We can enumerate them as

a1 < a2 < . . . < ak.

Since K is real closed, we must have a1, . . . , ak ∈ K. Let a0 = −∞, ak+1 =
∞, then for any 0 ≤ i ≤ k, the sign of f − g does not change on the
interval (ai, ai+1), by Lemma 3.6 (Intermediate value theorem). In other
words, f = g and f < g both correspond to unions of finitely many sets
among the following:

(−∞, a1) , {a1} , (a1, a2) , . . . , {ak−1} , (ak−1, ak) , {ak} , (ak,∞) .

Proposition 3.8. RCF admits quantifier elimination.

A regular approach to this proposition, for example taken in van den Dries’
book [3], first establishes cell decomposition specifically for semialgebraic
sets and deduces the Tarski-Seidenberg theorem:

Theorem (Tarski-Seidenberg). Given a real closed field F , we say that a
set U ⊆ F n is semialgebraic if it is a finite union of sets of the form

{x ∈ F n : p1(x) = · · · = pk(x) = 0, q1(x) > 0, . . . , qℓ(x) > 0} .

Let π : F n+1 → F n be the projection onto the first n coordinates, then for
any semialgebraic set U ⊆ F n+1, π(U) is semialgebraic.

However, we shall mention here a simpler model-theoretical proof by David
Marker, presented in chapter 1 of [13]. Marker first established the following
test for quantifier elimination as Theorem 1.4 in his book:
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Fact 4. Let T be a theory in a first-order language L. Given some formula
φ(x1, . . . , xn) ∈ Form(L), if for any models A,B ⊨ T such that C ≤ A,
C ≤ B is a shared substructure and any a1, . . . , an ∈ C,

A ⊨ φ(a1, . . . , an) if and only if B ⊨ φ(a1, . . . , an),

then T ⊨ ∀x1 · · · ∀xn (φ↔ ψ) for some quantifier-free ψ(x1, . . . , xn).

Proof of Proposition 3.8. By induction, it obviously suffices to prove that
for any quantifier-free formula φ(x, v1, . . . , vn), there exists quantifier-free
ψ(v1, . . . , vn) such that

RCF ⊨ ∀v1 · · · ∀vn (∃x φ↔ ψ) .

For any such φ, we invoke Fact 4: consider A,B ⊨ RCF and some shared
substructure C. Given our language L = {<,+,−,×, 0, 1}, C must be an
ordered integral domain. Let F be the real closure of the fraction field of C,
then F ≤ A and F ≤ B due to its uniqueness.

Now, suppose that A ⊨ ∃x φ(x, a1, . . . , an) for a1, . . . , an ∈ C. Since φ is
quantifier-free, by Lemma 3.7 φ(x, a1, . . . , an)A is a finite union of intervals
and singletons, where the singletons all lie in F and the intervals have end-
points in F. Then, there must exist

y ∈ F ∩ φ(x, a1, . . . , an)A ⊆ B,

so B ⊨ ∃x φ(x, a1, . . . , an) as well. By symmetry, the proof for the assump-
tion in Fact 4 finishes.

An immediate consequence is that the theory RCF is model-complete. Ad-
ditionally, for a model F = ⟨F ;<,+,−,×, 0, 1⟩ ⊨ RCF, the ordering ensures
that F is a field of characteristic 0, i.e. the minimal substructure of any
such F is naturally Z. By quantifier elimination, any first-order sentence is
equivalent to a quantifier-free proposition about Z, so RCF is trivially also
a complete theory as we desire.

We can finally prove that:

Theorem 3.9. Suppose that F = ⟨F ;<,+,−,×, 0, 1⟩ ⊨ RCF, then F is an
o-minimal structure.

Proof. Given the language L = {<,+,−,×, 0, 1}, consider any φ(x) ∈
Form(LF ) with one free variable. We can view it as φ(x; a1, . . . , an) with
constant parameters a1, . . . , an ∈ F , where

φ(x; v1, . . . , vn) ∈ Form(L).

By Proposition 3.8, we have quantifier-free ψ(x; v1, . . . , vn) ∈ Form(L) such
that

F ⊨ ∀x∀v1 · · · ∀vn (φ(x; v1, . . . , vn) ↔ ψ(x; v1, . . . , vn)) ,
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i.e. φ(x; a1, . . . , an)F = ψ(x; a1, . . . , an)F. However, here ψ(x; a1, . . . , an) is a
quantifier-free formula in Form(LF ), and we have shown in Lemma 3.7 that
ψ(x; a1, . . . , an)F is a finite union of intervals and singletons. This proves
that F is o-minimal.

3.2 Paths and winding numbers

From this section onwards, we shall use R = ⟨R;<,+,−,×, 0, 1, . . .⟩ to de-
note an arbitrary o-minimal structure(7) where R is a real closed field, i.e.
such that R ⊨ RCF. We use K to denote the “complex” extension of R
that contains a square root of −1. We write i =

√
−1, then K = R(i) is

algebraically closed.

We write every element in K as z = x+ iy for x, y ∈ R. Just as in classical
analysis, we say that x = Re(z) is the real part and y = Im(z) is the
imaginary part. We also define as usual the complex conjugate z = x − iy
and the modulus of z:

|z| = zz =
√
x2 + y2 ∈ R.

However, we do not have the concept of argument arg(z) in K because we
cannot access the exponential function in an arbitrary real closed field. In
order to recover winding numbers on K, we consider the unit circle S1 =
{z ∈ K : |z| = 1}, which is a multiplicative subgroup of K. It is easy to
verify that, viewed in R2, we can decompose

S1 = {−1, 1} ∪ Γ(s0) ∪ Γ(−s0),

where s0 : (−1, 1) → R is a definable continuous function, for example
given by s0(x) =

√
1 − x2. We then have a definable continuous bijection

σ0 : [0, 1) → S1 given by

σ0(t) =


1 if t = 0,

1 − 4t+ is0(1 − 4t) if 0 < t < 1/2,

−1 if t = 1/2,

4t− 3 − is0(4t− 3) if 1/2 < t < 1.

Now, we consider a covering of S1, given by H = Z × S1 with a group
operation

(m,x) + (n, y) =


(m+ n, xy) if σ−1

0 (xy) > σ−1
0 (x),

σ−1
0 (xy) > σ−1

0 (y),

(m+ n+ 1, xy) otherwise.

(7)Here we allow R to denote not just the real closed field ⟨R;<,+,−,×, 0, 1⟩, but also
any o-minimal extensions of it (in an expanded language).

16



Notice that the lexicographic ordering

(m,x) < (n, y) if m < n or
(
m = n and σ−1

0 (x) < σ−1
0 (y)

)
makes H a linearly ordered group, and the induced interval topology makes
H a covering space of S1 under the covering map π : (n, x) 7→ x. Viewing S1

as a multiplicative group, then π is at the same time a group homomorphism.

Definition 3.10 (Definable paths). We call a definable continuous function
γ : [0, 1] → K a definable path. We denote its image as

γ∗ = {γ(t) : t ∈ [0, 1]} .

We say that a definable path γ is circular if γ(0) = γ(1).

Theorem 3.11 (Path lifting theorem). Any definable path γ such that γ∗ ⊆
S1 lifts to a continuous function γ̃ : [0, 1] → H, such that γ = π ◦ γ̃.

Additionally, γ̃ is definable if we view H = Z× S1 ⊆ R3.

Proof. We consider the definable set

E = {t ∈ (0, 1) : γ(t) = 1} .

Since R is o-minimal, by Proposition 2.6 we can enumerate bd(E) ∪ {0, 1}
as

0 = a0 < a1 < . . . < ak < ak+1 = 1.

We first assign an integer to each interval and singleton in the decomposition
above recursively with

N : {{a0} , (a0, a1) , {a1} , . . . , (ak, ak+1) , {ak+1}} → Z

defined as the following:

Firstly, if γ(0) = 1, then we set N({a0}) = 0; otherwise we set N({a0}) =
N(a0, a1) = 0.

Now, for each next interval (ai, ai+1) where γ(ai) = 1, if γ = 1 constantly on
(ai, ai+1), then we set N(ai, ai+1) = N({ai}). Otherwise, γ ̸= 1 on (ai, ai+1).
Since γ(ai) = 1, by continuity there exists a sub-interval (ai, δ) ⊆ (ai, ai+1)
on which

|γ(t) − 1| < 2,

i.e. γ(t) ̸= −1, and thus Re(γ(t)) ̸= 0. By Lemma 3.6 (Intermediate value
theorem), we must then have either Re ◦γ > 0 or Re ◦γ < 0 on (ai, δ).
In the former case set N(ai, ai+1) = N({ai}), while in the latter case set
N(ai, ai+1) = N({ai}) − 1.

For each next singleton ai such that γ(ai) = 1, if γ = 1 constantly on
(ai−1, ai), then we set N({ai}) = N(ai−1, ai). Otherwise, γ ̸= 1 on (ai−1, ai),
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and similarly we must have either Re ◦γ > 0 or Re ◦γ < 0 on some (δ, ai) ⊆
(ai−1, ai). In the former case set N({ai}) = N(ai−1, ai), while in the latter
case set N({ai}) = N(ai−1, ai) + 1.

Finally, if γ(1) ̸= 1, then we simply set N({ak+1}) = N(ak, ak+1).

We then have definable function γ̃ : [0, 1] → H given by

γ̃(t) =

{
(N({ai}), γ(t)) if t = ai,

(N(ai, ai+1), γ(t)) if t ∈ (ai, ai+1) .

It is easy to verify that γ̃ is continuous – it suffices to check at each ai –
hence it is the desired lift of γ.

It follows immediately that:

Corollary 3.12. For any definable path γ and some w ∈ K \γ∗, there exists
a definable continuous function γ̃w : [0, 1] → H such that, for any t ∈ [0, 1],

γ(t) = w + |γ(t) − w| · π(γ̃w(t)).

Additionally, this function is unique up to an integer constant, i.e. if α, β :
[0, 1] → H both satisfy the condition above, then α = β + (n, 1) for some
n ∈ Z.

Definition 3.13 (Winding numbers). For any definable path γ and some
w ∈ K \ γ∗, we define γ’s winding number around w to be

W (γ, w) = γ̃w(1) − γ̃w(0) ∈ H.

Corollary 3.12 ensures that this is well-defined and independent of the choice
of γ̃w.

Especially, observe that

π(W (γ, w)) =
π(γ̃w(1))

π(γ̃w(0))
=

(γ(1) − w) |γ(0) − w|
(γ(0) − w) |γ(1) − w|

.

Therefore, if γ is circular, then W (γ, w) = (n, 1) for some n ∈ Z. We will
abuse notation and simply say W (γ, w) = n instead if we are only concerned
with circular paths.

As shown in [14], this reconstruction of the winding numbers shares many
immediate properties of its classical counterpart:

Proposition 3.14. For definable paths γ1, γ2 and w ∈ K \ (γ∗1 ∪ γ∗2),

• we denote the opposite path of γ1 as γ−1 , such that γ−1 (t) = γ1(1 − t),
then W

(
γ−1 , w

)
= −W (γ1, w);

• for any definable increasing bijection s : [0, 1] → [0, 1], γ1 ◦ s is also a
definable path with W (γ1 ◦ s, w) = W (γ1, w);
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• if γ1(1) = γ2(0), then we denote the concatenation of γ1 and γ2 as
γ1 ⋆ γ2, such that

(γ1 ⋆ γ2)(t) =

{
γ1(2t) if 0 ≤ t ≤ 1/2,

γ2(2t− 1) if 1/2 < t ≤ 1,

and W (γ1 ⋆ γ2, w) = W (γ1, w) +W (γ2, w).

Proposition 3.15. For definable paths γ1, γ2 such that 0 ̸∈ γ∗1 ∪γ∗2 , we have

W (γ1 · γ2, 0) = W (γ1, 0) +W (γ2, 0),

where γ1 · γ2 is given by t 7→ γ1(t) · γ2(t).

Proposition 3.16. If γ is a definable circular path such that γ∗ ⊊ S1, then
W (γ, 0) = 0.

Proposition 3.17. Let γ be a definable circular path and U a definably
connected component of C \ γ∗. For any w1, w2 ∈ U ,

W (γ, w1) = W (γ, w2).

Here Proposition 3.17 is a direct corollary of the following useful lemma:

Lemma 3.18. Let U ⊆ K be a definable, definably connected set and h :
[0, 1]×U → S1 be a definable continuous function such that, for any z ∈ U ,
hz : t 7→ h(t, z) is a circular path. Then W (hz, 0) is constant over U .

To prove this lemma, we shall cite without proof the following fact about
general o-minimal structures, numbered Fact 2.4 in [14]:

Fact 5. Let X, Y, Z be definable sets in an o-minimal structure with definable
choice(8), where X is definably compact(9), an interval for example, and Z
carries some definable norm onto a real closed field. If f : X × Y → Z
is a definable continuous map and y0 ∈ Y , then for every ε > 0 there is a
neighbourhood U of y0, open in Y , such that

|f(x, y) − f(x, y0)| < ε

for any x ∈ X, y ∈ U .

(8)Definable choice refers to finding a definable function f : π(S) → Rn, whose graph is
contained in the given definable set S ⊆ Rm+n, where π : Rm+n → Rm is the projection
onto the first m coordinates. As proven in chapter 6 of van den Dries’ book [3], this is
possible for any o-minimal structure with an ordered abelian group operation.

(9)Due to length constraints we do not discuss the concept of definable compactness
in detail in this essay. We do use here Theorem 2.1 in [17], an o-minimal analog of the
Bolzano-Weierstrass theorem, that a definable set in an o-minimal structure is definably
compact if and only if it is closed and bounded.
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Proof of Lemma 3.18. Theorem 2.16 (Cell decomposition theorem) yields a
finite decomposition of K that partitions the set

{(t, z) : t ∈ [0, 1] , z ∈ U, h(t, z) = 1} ,

on which a similar recursion as in the proof of Theorem 3.11 can be per-
formed. Therefore, h has a definable lift h̃ : [0, 1] × U → H. Let

W (hz, 0) = h̃(1, z) − h̃(0, z),

then we have definable sets {z ∈ U : W (hz, 0) = n} for each n ∈ Z.

Now, we assume that W (hz0 , 0) = n for some z0 ∈ Z. We consider h′ :
[0, 1] × U → S1 given by

h′(t, z) =
h(t, z)

h(t, z0)
,

then h′ is continuous with h′(t, z0) = 1 for any t ∈ [0, 1].

Using Fact 5, we can find a neighbourhood V of z0, open in U , such that for
any z ∈ V ,

|h′(t, z) − h′(t, z0)| < 2,

i.e. h′(t, z) ̸= −1. If we consider h′z : t 7→ h′(t, z), then h′z is not surjective,
and by Proposition 3.16, W (h′z, 0) = 0 for any z ∈ V , and by Proposition 3.15
we have

W (hz, 0) = W (h′z, 0) +W (hz0 , 0) = W (hz0 , 0).

Therefore, the sets {z ∈ U : W (hz, 0) = n} are open in U , and since U is
definably connected we must have W (hz, 0) = n on the entirety of U for
some fixed n ∈ Z.

3.3 Simple closed curves

Definition 3.19 (Simple closed curves). We say that a definable set C ⊆ K
is a simple closed curve if C = γ∗ for some definable circular path γ, such
that its restriction γ|[0,1) is a bijection.

The o-minimal analog of Jordan curve theorem is proven in Woerheide’s PhD
thesis [21]:

Theorem 3.20. If C ⊆ K is a definable simple closed curve, then K \C is a
union of two disjoint definably connected open sets, one of which is bounded
and the other is unbounded.

We call the bounded component the interior of C, Int(C). Due to Propo-
sition 3.14 and Proposition 3.16 for our definition of winding numbers, we
can now replicate exactly the classical proof(10) for the following result:

(10)For example, refer to Theorem V.1.4 and V.2.2 in [19].

20



Lemma 3.21. Let γ be a definable circular path with bijective restriction
γ|[0,1), such that C = γ∗ is a simple closed curve. Then

• for w in the unbounded component of K \ C, W (γ, w) = 0;

• for w ∈ Int(C), W (γ, w) ∈ {1,−1}.

We specifically say that γ has positive orientation if W (γ, w) = 1 for w ∈
Int(C), and we say that γ has negative orientation otherwise.

Notably, if a simple closed curve C = γ∗ is given by a definable circular
path γ with negative orientation, then W (γ−, w) = 1 by Proposition 3.14.
So we can always define a simple closed curve using a path with positive
orientation. Thus, from here onwards, when we say that a definable path γ
is a parametrisation for simple closed curve C = γ∗, we always imply that γ
has positive orientation.

Definition 3.22. Let C be a simple closed curve with parametrisation γ
and f : C → K be a definable continuous function. For any w ∈ K \ f(C),
we define f ’s winding number along curve C around w to be

WC(f, w) = W (f ◦ γ, w).

Definition 3.23 (Star-shaped curves). A simple closed curve C is star-
shaped if there exists some p ∈ Int(C) such that

(1 − t) p+ tz ∈ Int(C)

for any z ∈ C and t ∈ [0, 1). Infomally, C is star-shaped if for any z ∈ C,
the line segment between z and p lies in its interior.

When C is star-shaped, we can explicitly identify the two definably con-
nected subsets of K \ C, namely the inner subset

Int(C) = {(1 − t) p+ tz : t ∈ [0, 1) , z ∈ C}

and the outer one {(1 − t) p+ tz : t > 1, z ∈ C}. This allows us to prove the
following proposition:

Proposition 3.24. Let C be a definable, star-shaped simple closed curve.
Let f : C ∪ Int(C) → K be a definable continuous function. For any w ∈
K \ f(C ∪ Int(C)), WC(f, w) = 0.

Proof. Suppose that C has parametrisation γ and is made star-shaped by
the point p ∈ Int(C). We consider the map z : [0, 1]× [0, 1] → f(C ∪ Int(C))
given by

z(t, s) = f((1 − s) p+ sγ(t)).

Define h : [0, 1] × [0, 1] → S1 by

h(t, s) =
z(t, z) − w

|z(t, z) − w|
,
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which is a well-defined continuous function because w ̸∈ f(C ∪ Int(C)). By
Lemma 3.18 W (hs, 0) is constant over (0, 1], so

WC(f, w) = W (h1, 0) = W (hs, 0)

for any s ∈ (0, 1).

Additionally, h0 : t 7→ (f(p) − w) / |z(t, z) − w| is constant. Invoking Fact 5,
we must be able to find ε > 0 such that, for any s ∈ (0, ε), t ∈ [0, 1],

|h(t, s) − h(t, 0)| < 2.

This means that hs must not be a surjective function onto S1 and hence
W (hs, 0) = 0 by Proposition 3.16. We can thus conclude that WC(f, w) = 0
as well.

3.4 Differentiability

Definition 3.25. Given a definable open set U ⊆ Rm and definable f : U →
Rn, we say that f is R-differentiable at x ∈ U if there exists a linear map
T : Rm → Rn such that

lim
h→0

|f(x+ h) − f(x) − T (h)|
|h|

= 0.

We would then denote T as df(x), the R-differential at x.

Given definable open U ⊆ K and definable f : U → K, we say that f is
K-differentiable at x ∈ U if f is R-differentiable as a function on R2 and its
differential can be written as df(x) : h 7→ λh for some λ ∈ K. We then say
that the K-derivative of f at x, f ′(x) = λ.

It is easy to see that for f : x+iy 7→ u(x, y)+iv(x, y), f is K-differentiable at
z if and only if it is R-differentiable at z and the Cauchy-Riemann equations
hold:

∂u

∂x
(z) =

∂v

∂y
(z),

∂u

∂y
(z) = −∂v

∂x
(z).

The concept of winding numbers is useful here due to the following simple
lemma, proven in subsection 2.4 of Peterzil and Starchenko’s paper [14]:

Fact 6. Given a definable open set U ⊆ K and definable f : U → K, if f
is K-differentiable at z ∈ U with f ′(z) ̸= 0, then there exists an ε > 0 such
that, for every r < ε, if Cr is the circle around z with radius r, i.e.

Cr = {x ∈ K : |x− z| = r} ,

then WCr(f, f(z)) = 1.

This leads immediately to the following result, part of Lemma 2.30 in [14]:
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Lemma 3.26. Let C be a definable simple closed curve and f : C∪Int(C) →
K be a definable continuous function that is K-differentiable on Int(C) \ L
for some definable subset L with dimL ≤ 1. Let U be a definably connected
component of K \ f(C) and U ∪ f(Int(C)) ̸= ∅, then for any w ∈ U ,
WC(f, w) > 0.

As a sketch for the proof, via cell decomposition one can find a generic point
w ∈ U here, such that f−1(w) = {z1, . . . , zk} is finite, and f is differentiable
at each zi with f ′(zi) ̸= 0. Using Fact 6 and path operations in Proposi-
tion 3.14, we can compute

WC(f, w) =
k∑

i=1

WCi
(f, w) = k > 0,

where each Ci is a small enough circle around zi.

Now we can prove an important lemma in definable complex analysis:

Lemma 3.27 (Maximum principle for star-shaped curves). Let C be a defin-
able, star-shaped simple closed curve. Let f : C ∪ Int(C) → K be a definable
continuous function that is K-differentiable on Int(C)\L for some definable
subset L with dimL ≤ 1. For any w ∈ Int(C),

f(w) ∈ f(C) ∪ int(f(Int(C))).

In particular, we have

|f(w)| ≤ max
z∈C∪Int(C)

|f(z)| = max
z∈C

|f(z)| .

Proof. Assume that f(w) ̸∈ f(C). We can find the definably connected
component W of K \ f(C) containing f(w), then

f(w) ∈ W ∪ f(Int(C)).

Therefore, by Lemma 3.26, for any u ∈ W , WC(f, u) ̸= 0. By Proposi-
tion 3.24, this means that W ⊆ f(C ∪ Int(C)). Now, by definition, W ⊆
K \ f(C), so W ⊆ f(Int(C)) and hence

f(w) ∈ int(f(Int(C)))

because W is additionally open.

From the maximum principle, useful results can be established:

Theorem 3.28 (Identity theorem). Let U ⊆ K be a definably connected
open set and f : U → K be a definable K-differentiable function. We define

Û = {w ∈ cl(U) : f(z) converges as z → w} ,

and consider f̂ : Û → K given by f̂(w) = limz→w f(z). If f̂−1(u) is infinite
for some u ∈ K, then f̂(z) = u for all z ∈ Û .
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The proof for this result, found as Theorem 2.33(i) in [14], is again rather
technical. We provide here a sketch for it:

Let X = f̂−1(u) be infinite. Suppose for contradiction that f̂ is not constant,
then X is closed in Û and in an appropriate cell decomposition we can find
an open cell C in U \X with a 1-dimensional intersection fr(C)∩X. Now, by
choosing some w ∈ C close enough to that intersection and rotate f̂ around
w:

g(z) =
3∏

a=0

(
f̂(ia (z − w) + w) − u

)
,

g will be zero on some star-shaped curve around w while non-zero in the
interior, contradicting Lemma 3.27. Therefore, f̂ must be constant in this
case.

Now, an analog of the standard identity theorem in classical complex analysis
is an immediate corollary:

Corollary 3.29 (Identity theorem). Let U ⊆ K be a definably connected
open set and f : U → K be a definable K-differentiable function. If f−1(u)
is infinite for some u ∈ K, then f(z) = u for all z ∈ U .

Furthermore, we shall end by recovering the definable version of Liouville’s
theorem:

Theorem 3.30 (Liouville’s theorem). If f : K → K is a definable K-
differentiable function such that |f | is bounded on K, then f is a constant
function.

Proof. Consider h : K → K given by

h(z) =


f(z) − f(0)

z
if z ̸= 0,

f ′(0) otherwise.

We can see that h is continuous on K and K-differentiable on K \ {0}.
Therefore, given some w ∈ K \ {0}, for any circle

Cr = {z ∈ K : |z| = r}

with radius r > |w|, we can apply Lemma 3.27 and claim that

|h(w)| =
|f(w) − f(0)|

|z|
≤ max

z∈Cr

|f(z) − f(w)|
r

≤ 2M

r
,

where M is an upper bound for |f |.

Since 2M/r → 0 as r → ∞, we can conclude that f(w) − f(0) = 0 for any
w ∈ K \ {0}, i.e. f is constant on K.
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3.5 Singularities

We now proceed to the analysis of singularities of a K-differentiable function,
where definability allows us to disregard many badly behaving functions.
We start with quite a strong theorem, that 1-dimensional singularities of a
continuous function are removable:

Theorem 3.31. Let U ⊆ K be a definable open set and f : U → K be
a definable continuous function that is K-differentiable on U \ L for some
definable subset L with dimL ≤ 1. Then f is K-differentiable on U .

In fact, for any w ∈ U ∩ L, one can pick an arbitrary path(11) γ such that
γ([0, 1)) ⊆ U \ cl(L) and γ(1) = w, then the derivative can be expicitly
computed as

f ′(w) = lim
t→1−

f(γ(t)) − f(w)

γ(t) − w
.

Due to length constraints, we shall omit the technical verification in subsec-
tion 2.7 of [14] that the limit is independent of the choice of γ: it is basically
multiple applications of Lemma 3.27.

The more well-known result, that isolated singularities can be removed so
long as the function is locally bounded, is a corollary of this:

Corollary 3.32. Let U ⊆ K be a definable open set and f : U \ {w} → K
be a definable K-differentiable function for some w ∈ U . If f is bounded in
a neighbourhood of w, then f extends to w as a K-differentiable function.

Proof. We define g : U → K by

g(z) =

{
(z − w) f(z) if z ̸= w,

0 otherwise.

Since f is bounded near z, g is continuous on U and K-differentiable on
U \ {w}. By Theorem 3.31, g is K-differentiable on U .

By definition, g′(w) = limz→w f(z). Therefore, setting f(w) = g′(w) makes
f continuous on U . By Theorem 3.31 again we know that this extension is
K-differentiable on U .

While these results are analogous to their classical counterparts, definable
complex analysis is actually more “tame”. As proven in subsection 2.9 of
[14], isolated non-removable singularities are all poles:

Proposition 3.33. Let U ⊆ K be a definable open set and f : U \{w} → K
be a definable K-differentiable function for some w ∈ U . Then, either f or
1/f extends to a K-differentiable function in an open neighbourhood of w.

(11)Here, in any decomposition that partitions U and cl(L), all open cells in U lies in
U \cl(L), so w must lie on the frontier of one such open cell. In a real closed field structure,
these open cells are homeomorphic to unit boxes, and we can easily find a path from the
inside of the cell to w on the frontier.
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Proof. Consider the graph Γ(f) ⊆ K2 ∼= R4. By Fact 1 we have dim Γ(f) =
dim(U \ {w}) = 2. Thus, by Proposition 2.30, dim fr(Γ(f)) < 2 and hence
{w} ×K ̸⊆ fr(Γ(f)). In other words, there exists some z ∈ K such that

(w, z) ∈ K2 \ cl(Γ(f)).

K2 \ cl(Γ(f)) is open. Viewing K2 as a product topology, we know that
there exist ε, δ > 0 such that, if Dw and Dz are open discs of radius ε and δ
around w and z respectively, then

(Dw ×Dz) ∩ Γ(f) = ∅.

This means that |f(x) − z| ≥ δ for any x ∈ Dw \ {w}, so 1/ (f(x) − z) is
bounded by 1/δ. By Corollary 3.32, x 7→ 1/ (f(x) − z) extends to a K-
differentiable function on Dw.

This means that limx→w 1/ (f(x) − z) is well-defined. Depending on whether
limx→w 1/ (f(x) − z) = 0, either 1/f or f is bounded near w, so Corol-
lary 3.32 ensures that one of them extends to a K-differentiable function
near w.

The non-existence of essential singularities on definable functions further
implies that:

Theorem 3.34. If f : K \ A → K is a definably K-differentiable function
for finite A ⊆ K, then f is a rational function.

To prove this, we first need the following counterpart of classical results,
established as Lemma 2.42(ii) and Theorem 2.45 in [14]. It follows easily
from Proposition 3.33 above:

Lemma 3.35 (Poles and principle parts). Let U ⊆ K be a definable open
set and f : U \ {w} → K be a definable K-differentiable function for some
w ∈ U . If 1/f can be extended to a K-differentiable function near w such
that 1/f(w) = 0, i.e. limz→w f(z) = ∞, then there exists a unique integer
n > 0 such that

lim
z→w

f(z) (z − w)n = a

is well-defined for some a ∈ K \ {0}.

We say that w is a pole of order −n for f .

Additionally, there exists a−n, . . . , a−1 ∈ K such that the function

f(z) −
n∑

i=1

a−i

(z − w)i

extends to a K-differentiable function near w.
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Proof of Theorem 3.34. If w ∈ A is a pole for f , then by Lemma 3.35 we
can find a−n, . . . , a−1 such that

f −
n∑

i=1

a−i

(z − w)i

can be extended to w as a K-differentiable function. The subtrahend is ad-
ditionally K-differentiable on K \ {w}. Therefore, let w1, . . . , wk enumerate
all the poles for f , then we can define rational function

g(z) =
k∑

j=1

nj∑
i=1

a
(j)
−i

(z − wj)
i

such that f − g extends to a K-differentiable function on the entirety of K.

Now, define h : z 7→ f(1/z) − g(1/z), then h is K-differentiable on K \ {0}.
Again by Lemma 3.35, we can find b−r, . . . , b−1 (where possibly r = 0, if the
singularity 0 is removable for h) such that

h−
r∑

i=1

b−i

zi

is K-differentiable on the entirety of K. It is definable and continuous, so it
will be bounded on any definably compact set. Additionally,

lim
z→∞

(
h(z) −

r∑
i=1

b−i

zi

)
= f(0) − g(0),

so the function is bounded near infinity as well. By Theorem 3.30,

h−
r∑

i=1

b−i

zi
= c

for some constant c ∈ K. Hence

f = g + c+
r∑

i=1

b−1z
i

is a rational function.

4 O-minimal structures for classical analysis

4.1 Restricted analytic functions and subanalytic sets

We now return to the standard fields R and C. Let R̄ = ⟨R;<,+,−,×, 0, 1⟩
be the model for reals in the language of RCF, then Proposition 3.8 implies
that the theory for R̄ admits elimination of quantifiers, and immediately:
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Proposition 4.1. The definable sets in R̄ are exactly the semialgebraic sets.

We seek to obtain an expansion of R̄ that admits a larger portion of real an-
alytic functions(12). Notably, we can make the following explicit stipulation:

Definition 4.2. We say that a function f : Rn → R is a restricted analytic
function(13) if f([−1, 1]n) ⊆ [−1, 1], f = 0 on Rn \ [−1, 1]n, and f is real
analytic on [−1, 1]n, i.e. f can be written as a power series that converges
on [−1, 1]n.

Let Ran be an expansion of R̄ with a new function symbol f for each restricted
analytic function; let RD

an be an expansion of Ran with a new binary function
symbol D such that

D(x, y) =

{
x/y if y ̸= 0 and |x| ≤ |y| ,
0 otherwise.

D is easily definable in Ran, thus the definable sets in Ran and RD
an coincide.

However, with the addition of D, we have the following result by Denef and
van den Dries in [1]:

Proposition 4.3. [−1, 1] has elimination of quantifiers in the theory of RD
an.

In other words, all definable subsets of [−1, 1] are obtainable from boolean
algebra and projection in addition to real analytic equalities and inequalities.
In fact, given the follow notions in real analysis:

Definition 4.4 (Semianalytic and subanalytic sets). A set S ⊆ Rn is called
semianalytic if, at each point x ∈ Rn, there exists an open neighbourhood
U of x such that S ∩ U is a finite union of the sets of the form

{y ∈ U : f(y) = 0, g1(y) > 0, . . . , gk(y) > 0} ,

where f, g1, . . . , gk are analytic functions on U .

A set S ⊆ Rn is called subanalytic if at each point x ∈ Rn, there exists an
open neighbourhood U of x and a relatively compact semianalytic S ′ ⊆ Rn+m

such that S ∩ U = π(S ′) ∩ U , where π : Rn+m → Rn is the projection onto
the first n coordinates.

Then it is proven in [1] that

Theorem 4.5. The definable subsets of [−1, 1]n in RD
an are exactly the sub-

analytic subsets.

(12)For a holomorphic function f in C, both Re(f) and Im(f) are real analytic. Thus,
simply looking for an expanded model of reals that defines more analytic functions enables
us to apply definably complex analysis to more holomorphic functions.
(13)We use the definition in [1]. It is obvious that any analytic function with domain
restricted to a bounded box can be put into this definition with affine transformations.
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In order to deal with definable subsets of the whole of Rn, we identify Rn as
(−1, 1)n through a compactification:

Definition 4.6 (Globally subanalytic sets). Consider φn : Rn → [−1, 1]n

given by

φn(x1, . . . , xn) =

(
x1√
x21 + 1

, . . . ,
xn√
x2n + 1

)
.

We say that S ⊆ Rn is globally subanalytic if φn(S) is subanalytic.

Corollary 4.7. The definable sets in Ran or RD
an are exactly the globally

subanalytic sets.

Proof. We simply note that φn is a definable bijection between Rn and
(−1, 1)n. Thus, by Theorem 4.5, S ⊆ Rn is definable in RD

an if and only
if φn(S) is definable in RD

an, if and only if φn(S) is subanalytic, if and only
if S is globally subanalytic.

It is proven by  Lojasiewicz in section 16 of [12] that a semianalytic set is a
locally finite union of its connected components. Via projection, subanalytic
subsets of compact [−1, 1] must be finite unions of intervals and singletons.
This means that Ran is o-minimal.

We know from classical complex analysis that holomorphic functions are
analytic. It follows immediately that:

Proposition 4.8. If U ⊆ C is open with f : U → C being a holomorphic
function, then for any definable compact V ⊆ U , f |V is an analytic function
on compact domain, hence is definable in Ran.

This allows the easy transferral of local results in definable complex analysis
to arbitrary holomorphic functions. For example, we have the following proof
of the classical Liouville’s theorem using o-minimality, by Kovacsics in [10].
This is in almost the same manner as Theorem 3.30:

Theorem 4.9 (Liouville’s theorem). If f : C → C is a bounded entire
function, then f is a constant function.

Proof. Let M denote an upper bound for |f |. Given some w ∈ C \ {0}, for
any circle

Cr = {z ∈ C : |z| = r}

with radius r > |w|, f |Cr∪Int(Cr)
is definable in Ran by Proposition 4.8. We

can consider h : Cr ∪ Int(Cr) → C given by

h(z) =


f(z) − f(0)

z
if z ̸= 0,

f ′(0) otherwise.
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h is then definable and continuous on Cr ∪ Int(Cr) and holomorphic on
Int(Cr) \ {0}. We can apply Lemma 3.27 and claim that

|h(w)| =
|f(w) − f(0)|

|z|
≤ max

z∈Cr

|f(z) − f(w)|
r

≤ 2M

r
.

Since 2M/r → 0 as r → ∞, we can conclude that f(z) − f(w) = 0 for any
w ∈ C \ {0}, i.e. f is constant on C.

4.2 O-minimal models for the exponential function

Ran is still a somewhat restricted model, due to the following fact identified
in [2]:

Fact 7 (Polynomial growth). Consider any globally subanalytic function f :
(0,∞) → R. There is some d ∈ N, a > 0 such that |f(t)| < td for any t > a.

This directly means that the real exponential function x 7→ ex cannot be
definable in Ran.

It is due to results by Wilkie, Khovanskii, van den Dries and Miller that
larger o-minimal extensions of R̄ can contain the real exponential function.
Wilkie proved in [20] that

Proposition 4.10. The theory of the structure Rexp =
〈
R̄; exp

〉
, where exp

is the usual exponential function x 7→ ex on R, is model complete.

In other worlds, any first-order formula is equivalent to an existential formula
in the theory, and all definable sets will correspondingly be projections of
finite unions of sets given by equalities and inequalities involving arithmetic
operations and the exponential function only.

Noticeably, if we have an equality (or respectively an inequality) of the form
P (exp(Q(x))) = 0, then we can introduce an additional variable y, so that
the roots of the equality are exactly the projection of

{(x, y) : P (exp(y)) = y −Q(x) = 0}

onto the first coordinate. Therefore, we can recursively eliminate all ex-
pressions where a complex formula occurs inside the exponential, and all
definable sets in Rexp can thus be given by equalities and inequalities only
involving the form

P (x1, . . . , xn, exp(x1), . . . , exp(xn)),

where P ∈ R[X1, . . . , Xn, Y1, . . . , Yn] is a polynomial. These form Khovan-
skii’s Pfaffian systems for the Pfaffian chain(14) ⟨exp⟩:

(14)Strictly speaking, the chain needed is ⟨exp(x1), . . . , exp(xn)⟩ here.
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Definition 4.11 (Pfaffian chains). We say that a finite sequence of real an-
alytic functions ⟨f1, . . . , fk⟩ on n variables form a Pfaffian chain if for all 1 ≤
i ≤ n, 1 ≤ j ≤ k there exists a polynomial Pij ∈ R[X1, . . . , Xn, Y1, . . . , Yj]
such that

∂fj
∂xi

= Pij(x1, . . . , xn, f1, . . . , fj).

A Pfaffian system for the chain is then a system of equations

Q1(x1, . . . , xn, f1, . . . , fk) = · · · = Qm(x1, . . . , xn, f1, . . . , fk) = 0

where Q1, . . . , Qm ∈ R[X1, . . . , Xn, Y1, . . . , Yk] are polynomials.

Khovanskii proved as Theorem 4 in [8] that:

Theorem 4.12. Let a set X ⊆ Rn be defined by a Pfaffian system of equa-
tions. Then the number of connected components of X is finite.

This immediately implies that the definable subsets of R in Rexp are finite
unions of intervals and singletons and thus Rexp is o-minimal.

Extending Wilkie’s results, van den Dries and Miller also proved in [4] that:

Theorem 4.13. Ran,exp = ⟨Ran; exp⟩ is model complete and o-minimal.

In this expansion, the restriction of the complex exponential function z 7→ ez

is definable in any horizontal strip {z ∈ C : a < Im(z) < b}: we can simply
write

ez = eRe(z)ei Im(z) = eRe(z) (cos(Im(z)) + i sin(Im(z))) ,

where sin and cos are definable in Ran on the bounded interval (a, b).

This is in fact the best one can do with the complex exponential function in
any o-minimal structure, due to the following proof in [15]:

Proposition 4.14. If z 7→ ez is definable in an o-minimal expansion A of
R̄ on a definable set U ⊆ R, then {Im(z) : z ∈ U} is bounded on R.

Proof. Due to results in [18], we can always move into to a Pfaffian closure
of A, where the real exponential function is definable.

Let S = {Im(z) : z ∈ U} ⊆ R, then we can choose some definable(15) z :
S → U such that Im(z(r)) = r for any r ∈ S. Now, let f : R + iS → C be
given by

f(x+ ir) = exez(r)e−Re(z(r)) = ex+ir.

f will be holomorphic on R + iS.

If S is unbounded, since it is definable, we can find some a ∈ R such that
either (a,∞) ⊆ S or (−∞, a) ⊆ S. Either way,

{2kπi ∈ S : k ∈ Z} ⊆ f−1(1)

(15)An o-minimal expansion of R̄ has definable choice, as proven in chapter 6 of van den
Dries’ book [3].

31



will be infinite, contradicting Corollary 3.29 (Identity theorem).

Despite this, we are still able to perform a large portion of classical complex
analysis in o-minimal structures. For example, we can mention some results
by Kaiser on Riemann mappings:

Let D = {z ∈ C : |z| < 1} denote the unit disc in C and let P denote a
polygon with vertices ω1, . . . , ωn in counter-clockwise order. If the inter-
nal angle of bd(P ) at each ωi is given by παi where αi ∈ (0, 2), then for
b1, . . . , bn ∈ bd(D), also in counter-clockwise order, the unique biholomor-
phism f : D → P , whose continuous extension to bd(D) maps each bi to ωi,
is given by the Schwarz-Christoffel map

f(z) = c0

∫ z

0

n∏
j=1

(ξ − bj)
αj−1 dξ + c1.

To begin, if we bound away from any bj, then the integrand will be holo-
morphic, thus the integral will be analytic and hence definable in Ran on the
bounded domain D. Kaiser showed additionally in [6] that:

Proposition 4.15. For each 1 ≤ j ≤ n,

• if αj ∈ Q, then f above is definable in Ran near bj,

• if αj ̸∈ Q, then f above is definable in RR
an near bj, which

(16) includes
a function x 7→ xα for each α ∈ R.

Proof. The function
∏

i ̸=j (ξ − bi)
αi−1 is holomorphic near bj, so we can write

it as a convergent power series∏
i ̸=j

(ξ − bi)
αi−1 =

∞∑
m=0

am (ξ − bj)
m .

Then ∫ z

0

n∏
i=1

(ξ − bi)
αi−1 dξ =

∫ z

0

∞∑
m=0

am (ξ − bj)
m+αj−1 dξ

= (ξ − bj)
αj

∞∑
m=0

am
m+ αj

(ξ − bj)
m ,

where the summation is analytic near bj. The function is thus definable in
Ran if αj ∈ Q, and definable in RR

an otherwise.

Thus, a Riemann mapping f : D → P must be definable in RR
an at least. As

Theorem 3.3 in [7], Kaiser is also able to construct some o-minimal structure
RQ and prove in general that:

(16)This is a reduct of Ran,exp because with exp we also have log, and we can write
xα = exp(α log(x)).
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Theorem 4.16. Let Ω ⊆ C be a bounded, semianalytic and simply connected
domain, such that at each singular boundary point x ∈ bd(Ω), the angle
made by bd(Ω) at x is an irrational multiple of π, then a Riemann mapping
f : Ω → D is definable in RQ.

5 Conclusion

In classical real and complex analysis, one very often looks at polynomials,
rational functions and other naturally useful entities with tame topologi-
cal properties. This essay examined o-minimality from model theory as a
possible explanation. Following van den Dries, Peterzil and Starchenko, I
explained cell decomposition on o-minimal structures with its exciting impli-
cations, and discussed the large portion of complex analysis one can recover
and possibly simplify when only definable sets and functions are concerned.

We are able to extend such technique to many interesting complex func-
tions by considering the o-minimal definability of the exponential and other
analytic functions on bounded domains. This demonstrates the dense occur-
rences of o-minimal (hence topologically tame) classes of entities in classical
analysis and the potential significance of o-minimal theories themselves, even
for someone without much model-theoretical interest.
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