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Abstract

Pluralism for the mathematical ontology has been a popular option
since Gödel’s discovery of incompleteness in formal systems, especially
in the philosophy of set theory with many disputable axioms. This
thesis aims to examine the large cardinal axioms that generate a linear
interpretability hierarchy, and critically assess related arguments for
and against pluralism, primarily referring to Koellner’s discussions of
reflection principles and Ω-completeness and Woodin’s (sequence of)
work on the axioms of determinacy. It shall be argued that the axioms
have implications in various areas of mathematics and philosophical
justification for the axioms is received differently across the branches.
The thesis shall propose that this debate between pluralists and anti-
pluralists can be dismissed by taking a Carnapian perspective.
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1 Introduction

After Zermelo–Fraenkel set theory was first proposed around the beginning
of the twentieth century, there have been multiple attempts to modify or
strengthen the system through alternative extensions, the most well-known
examples being the axiom of choice and the continuum hypothesis. Differ-
ences between such choices of axiomatisation ultimately rose to the centre of
the study of set theory due to the independence results by Kurt Gödel, Paul
Cohen and subsequent mathematicians. Ever since, ontological pluralism
has been a position that one must address in the philosophical discussions
of set theory and even the whole of mathematics.

This thesis will, specifically, look at the collection of large cardinal axioms
asserting the existence of inaccessible cardinals, Mahlo cardinals, measurable
cardinals, et cetera, on the foundation of the standard Zermelo-Fraenkel ax-
ioms with Choice (ZFC). I will assess why there is strong evidence for a
pluralist ontology with respect to such entities in a traditional realist per-
spective and how such a position endangers even the most intuitive concepts
in standard mathematics, such as the real numbers. I will argue that a Car-
napian viewpoint, as advocated in his famous paper Empiricism, Semantics
and Ontology in 1950 ([7], abbreviated as ESO henceforth), provides a rea-
sonable middle-ground for the pluralists and anti-pluralists and allows a
philosophical analysis of contemporary mathematical practices.

In this thesis, I will first elaborate on Carnapian positivism in section 2 as
a philosophical background and argue that this is a viable philosophy of
mathematics, despite the major attacks on the theory in the past century.
In section 3, I will introduce the large cardinal axioms and the disputes
surrounding their mathematical implications. Some set-theoretic attempts
at solving the problems in favour of anti-pluralism will be examined in sec-
tion 4, where I will comment on how these pragmatic arguments are best
understood under pluralist assumptions. Section 5 will explain why the
set-theoretic disputes have consequences in the more intuitive areas of real
analysis and combinatorics and establish more support for a resolution be-
tween the evidence for pluralism in set theory and that for anti-pluralism
in the rest of mathematics. Finally, I will contrast and argue for the Car-
napian position in section 6, in comparison to perspectives of contemporary
philosophers of mathematics such as Penelope Maddy.

2 A Carnapian philosophy of mathematics

2.1 Linguistic frameworks

Here, by a Carnapian philosophy, I refer to Carnap’s later writings after
his Aufbau, most importantly his book The Logical Syntax of Language ([6],
abbreviated as Logical Syntax henceforth) and the essay ESO ([7]). During
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this stage of his career, Carnap founded his meta-ontology — in fact, the
rejection thereof — upon the concept of linguistic frameworks. As Carnap
explained in section 2 of ESO :

if someone wishes to speak in his language about a new kind of
entities, he has to introduce a system of new ways of speaking,
subject to new rules; we shall call this procedure the construction
of a framework for the new entities.

When assessing formal languages in Logical Syntax, Carnap gave a clearer
definition of the “logical syntax of a language” as “the systematic statement
of the formal rules which govern it together with the development of the con-
sequences which follow from these rules”. In the terminology of modern logic,
Carnap’s formal frameworks specify the grammar for the formation of formu-
lae and both semantic and syntactic rules governing the inferential relations
between them. However, it is worth noting that, as an empiricist, Carnap
intended for his concept to work with not only logic and mathematics, but
also empirical scenarios such as a framework of the “spatio-temporally or-
dered system of observable things and events” in the grammar of an everyday
language.

Carnap adopted the concept of linguistic frameworks mainly to justify the
position of an empiricist who wishes to talk about abstract entities such as
in mathematics. Carnap attempted to explain that such a person is neither
guilty of committing to a Platonist ontology nor required to reduce his ab-
stract references to mere calculus in a nominalist way. Carnap’s argument
based on his introduction of the internal/external distinction:

As he suggested, claims like “there are numbers” — and essentially every
other metaphysical claim — are inherently relativised on the perspective of
linguistic frameworks. There is an internal understanding of this statement
within each specific framework, which is trivially true so long as the rules of
the framework defines both the concept “number” and the constants that it
applies to, such as “5”. However, to evaluate such a statement objectively,
external to any linguistic framework, is impossible, as there lacks a clear
cognitive interpretation of the external claim within any scientific language
without trivialising it. As Carnap argued, one can at best raise the prac-
tical question of whether to accept a linguistic framework equipped with
the aforementioned account of numbers and this is no longer a metaphysical
problem where one debates for an absolute, correct position.

Carnap thus simply dismissed the debate between a Platonist and a nominal-
ist ontology and granted that an empiricist can adopt a language to speak of
abstract entities like numbers for its effectiveness and efficiency, for example,
in scientific endeavours, without providing metaphysical justifications for his
ontological commitments. One who does so is free to assert that numbers
and other abstract entities exist so long as the statement is only understood
internally to his chosen language.
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2.2 Quine’s attacks on empiricism

Admittedly, Carnap’s positivist project is often seen as defeated by various
criticisms that ensued, most famously Quine’s essay Two Dogmas of Em-
piricism ([40]). In the article, Quine accused empiricists of making the two
mistakes of both drawing a non-existent line between analytic and synthetic
truths and sweepingly reducing every meaningful sentence to immediate ex-
perience.

Here, I shall focus on the former problem, namely the analytic/synthetic
distinction present throughout the Carnapian constructions. The reason is
that, as Quine also acknowledged, later work of Carnap has diverted from
the problematic radical reductionist position since his unsuccessful attempt
in the Aufbau, and Quine’s dissatisfaction towards the dogma of reduction-
ism that survived “in a subtler and more tenuous form” is inherently the
same as the first criticism that Quine raised — that the truths of a theory
ought to depend holistically on both linguistic and factual features, as he be-
lieved, where the identification of single statements as true either by specific
empirical data or entirely by syntactic analysis is unintelligible.

Quine’s view is founded upon his observation of the indeterminacy of mean-
ing. Specifically, a sentence like “no bachelor is married” is traditionally
identified as analytic, or true by virtue of meaning, because it is possible
to replace “bachelor” by its synonym “unmarried man”, such that the re-
sultant is true under any reinterpretation of its non-logical terms. However,
Quine pointed out that the statement “‘bachelor’ is synonymous to ‘unmar-
ried man”’ is simply a lexicographer’s report of some observed, pre-existent
usage in the English language and itself requires justification. Therefore, if
an empiricist would like to support his substitution of “bachelor” by “un-
married man”, or that the pair is “interchangeable salva veritate”, without
appealing to empirical observations, he must present some form of necessity
that the term coincides with its definiens, which, as Quine commented, is
a circular argument invoking a notion of analyticity in the language before
defining it.

The problem can seemingly be solved by considering only artificial languages,
where statements like “all bachelors are unmarried men” are explicitly true
by semantic stipulations of the language, or legislative definitions as Quine
called them in his 1960 commentary [41]. Legislative definitions are less prob-
lematic in motivating analytic truths, as compared to the example above in
a natural language. Indeed, artificial languages have been Carnap’s primary
interest all along, both in his Aufbau and later in his Logical Syntax. How-
ever, Carnap never succeeded in providing a general notion of analyticity for
his artificial languages and instead only proposed individual criteria — for
which I shall call “analytic-for-L”, following Quine — to identify analytic
sentences in a specific language L based on semantic rules. Since Carnap had
different semantic rules in mind for, for example, his Language I and Lan-
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guage II in Logical Syntax, his account does not constitute a philosophical
analysis of the concept “sentence S is analytic for language L” for artificial
languages in general.

This problem is more clearly raised by Koellner in [27], in the section “The
Argument from Free Parameters”: specifically in Logical Syntax, Carnap
defined analyticity through two different approaches. The first approach is
his treatment of analyticity in Language II in §34d where he operated on the
cases of logical and descriptive sentences separately; the second approach is
his discussion in §52 of a general language equipped with a division between
logical and physical rules of syntactic transformation. Either way, Carnap’s
analyticity is formulated through the restriction of terminology and rules
to a pre-defined subset, avoiding the use of descriptive or physical concepts
that, for Carnap, are subject to empirical evaluation. As Koellner argued,
such constructions depend on some arbitrary distinctions in the linguistic
features that remain unjustified. In an extreme case, if Carnap had taken
names for physical entities to also be logical symbols or assigned natural
laws as logical transformation rules, he would come to the absurd conclusion
that all truths in the language are analytic.

Of course, it must be mentioned that Carnap’s stipulations in Logical Syntax
are entirely formal and he himself has never claimed to take this as a philo-
sophical analysis of the intuitive concept of analyticity in general. Therefore,
Carnap shall not be guilty of the criticism that his definitions are simply ar-
tificial. However, it can still be problematic, as Quine suggested in section X
of his 1960 article [41], for this notion to constitute a part of Carnap’s own
project in the way that

[it] is only by assuming the cleavage between analytic and syn-
thetic truths that he is able e.g. to declare the problem of uni-
versals to be a matter not of theory but of linguistic decision.

Namely, as Carnap suggested in §51 of Logical Syntax, “if P-rules [i.e. phys-
ical rules] are stated, we may frequently be placed in the position of having
to alter the language”, so he acknowledged that the choice of physical rules
is a matter of not only practical but also empirical — that is, theoretical —
evidence. However, if the distinction between logical and physical rules is
indeed arbitrary as Koellner suggested, he will be in no position to maintain
that the acceptance of logical rules is a purely linguistic decision and not in
danger of revision upon new empirical evidence. This is precisely the worry
expressed in Quine’s holistic view of knowledge and one of the problems at
root why Carnap’s and Quine’s theories cannot cohere.

2.3 As a philosophy of mathematics

While Carnap’s primary interest, as he described in Chapter 1 of his 1935
book Philosophy and Logical Syntax ([5]), was to adopt and potentially ex-
pand one definite linguistic framework to unify all theoretical knowledge
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under logic and the empirical sciences, I believe that his approach has some
overlooked potential in explaining a philosophy of abstract entities with an
implicitly plural ontology, fitting into the contemporary scene of mathemat-
ical research. Namely, a Carnapian perspective allows one to acknowledge
the existence of multiple mathematical structures — in a model-theoretic
sense, for example, all demonstrating the features of classical real numbers
— in the form of distinctive frameworks of evaluation, while still being able
to speak of the unique collection of “real numbers” as an internal notion
in everyday research. The theory further allows an artificial choice between
the plurality of theories, based on pragmatic considerations alone. This is
a much needed resolution for the philosophy of mathematics given the in-
dependence of the axioms of determinacy that I will elaborate further in
subsection 5.1.

As for Quine, I think that his worries are quite reasonable for Carnap’s
theory as a foundation of empirical sciences. However, Quine, as a natural-
ist who aimed to establish the contemporary scientific practices as the sole
justification for itself, failed to respect and account for the difference be-
tween mathematical and scientific practices. Essentially, I wish to point out
that the analytic/synthetic distinction does exist in a modern scientific view
of knowledge as the boundary between mathematical and empirical facts.
This is the boundary where, when a mathematical model is applied to cer-
tain measurements and produces incorrect predictions, a scientist would only
reasonably question the empirical claim that the chosen model applies to the
scenario in concern, while it is unimaginable to state that the mathematical
model itself is simply “false”. For example, we can say that the discovery of
general relativity forces one to adopt a non-Euclidean view of the physical
space, but it still does not constitute evidence to say that Euclidean geome-
try is false. In Carnap’s words, the rejection of logical assumptions and rules
external to any framework is non-cognitive.

Quine’s central assumption about mathematics, as clearly seen from his 1960
essay [41], is that much of it is — potentially — concerning an interpreted
theory like that of the natural sciences, where one has certain entities of
discourse in mind first and proceeds to discover properties of them. However,
the modern mathematical scene is one where pluralism has been a pervasive
danger across multiple areas, in the sense that many natural questions remain
uncertain from a standard description of the mathematical entities involved,
such as sets. Given this issue of unsolvability in the formal languages, such
an interpretation is ambiguous even in the most intuitive areas of today’s
mathematics if one considers implications of set theory.

On the other hand, I believe that a Carnapian position is preferrable in an
entirely uninterpreted language of mathematics, where all linguistic rules
as specified priorly in the form of mathematical axiomatisation. A mathe-
matical fact is considered analytic in some linguistic framework in Carnap’s
sense by being the consequence of the null set or a set of axioms that the
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framework comes equipped with. By refusing to also interpret any empirical
entities, a linguistic framework residing entirely in the domain of mathe-
matics escapes the Quinean criticism that its corpus of artificially specified
“analytic truths” may be subjected to any form of revision upon empirical
evidence, and thus is true, as Carnap desired, in virtue of the linguistic and
pragmatic decisions only.

Gödel’s Criticisms

It is worth mentioning that, when understood as positing a plurality of math-
ematical realities through entirely formal means, other concerns for Carnap’s
philosophy may be raised. As Gödel claimed1 in his unpublished paper [21],
an interpretation of mathematics as syntax may be accepted as support for
conventionalism only if it admits finitary syntax and rules of inference as well
as a consistency proof. A majority of the constructions in Carnap’s Logical
Syntax fail to meet such requirements: namely, his Language II is neither
finitary, due to his explicit use of the semantic evaluation of unbounded
quantifiers as part of the syntax, nor proved consistent, as he admitted that
his analysis “gives no absolute certainty that contradictions in the object
language II cannot arise” around the end of §34.

In fact, Gödel’s seemingly reasonable requirements can be a huge obstacle
for any similar interpretations because firstly, by Gödel’s first incompleteness
theorem, any finitary, formal account of mathematics cannot be complete —
there will exist a sentence that is “intuitively true” but not derivable from
the system. Secondly, by Gödel’s second incompleteness theorem, the con-
sistency proof of a formal system cannot exist within the system itself, thus
requires a meta-theory formulating sufficient mathematics prior to presenting
the account of mathematics in concern, leading towards a infinite regression.

I agree with Goldfarb here that a Carnapian philosophy of mathematics
is capable of dismissing Gödel’s attacks as a mere “dogmatic insistence”.
Finitary methods was never seen as a condition to abide by in Carnap’s
work and this can probably find some justification nowadays in the spreading
interest in non-finitary methods in alternative logics such as the language
Lω1ω or the ω-rule. Indeed, even if one instead decided to follow Gödel’s
criteria, reject Carnap’s indefinite c-rules and specify a syntactic system in
the modern, proof-theoretic way only — this may be slightly inconvenient
for an empiricist like Carnap, who wished to adopt one language to speak
of all of mathematics and the empirical sciences — incompleteness is never
a problem for a pluralist perspective of mathematics because, as one will
see in the subsequent sections, being able to switch to and discuss about
incompatible expansions generated by an independent sentence in the base
theory is a feature instead of a problem for such a philosophy.

Regarding the argument on consistency proofs, Carnap was not too worried,

1Further analysis of Gödel’s criticisms can be seen in Goldfarb’s exposition [22].

6



in his comment at the end of §34 in Logical Syntax, about the fact that,
due to Gödel’s researches, a consistency proof as certain as Hilbert desired
can potentially be impossible. Ironically, this is a potential problem for his
empiricist project because, should he discover that any of his languages are
inconsistent and derives contradictory propositions about empirical obser-
vations from the null set, the rejection of such a language and its analytic
truths would be for theoretical reasons instead of pure linguistic decisions.

However, while it is uninteresting to work with a mathematical theory shown
to be contradictory, modern practices of mathematical logic make perfect
sense of proofs from a set of axioms not known to be consistent. In set
theory, it has been conventional indeed that all it requires is simply a proof
of relative consistency from a standard theory like ZFC — which is not an
absolute justification of consistency at all in Hilbert and Gödel’s sense —
before a newly proposed axiom system is accepted as a well-behaved context
to research in. Thus, it is reasonable, as I believe, for a pluralist to maintain
that forcing a linguistic framework of mathematics to conform to Gödel’s
criteria is mere pragmatic preference and not an absolute requirement at all.
In other words, as Carnap’s principle of tolerance goes in ESO :

Let us be cautious in making assertions and critical in examining
them, but tolerant in permitting linguistic forms.

Therefore, I shall conclude from this section that Carnapian positivism is a
reasonable candidate for a philosophy of mathematics despite its inadequacy
for justifying empirical sciences. I will elaborate in subsequent sections, by
looking at the specific mathematical results related to the large cardinal
axioms, that this is indeed a fitting position to take.

3 New axioms from large cardinals

3.1 The large cardinals

In this essay, all mathematical discussions will be based on the following stan-
dard axiomatisation of the Zermelo-Fraenkel set theory with Choice (ZFC)
unless otherwise indicated. I follow Jech’s textbook Set Theory [23] and
denote

ZFC := Extensionality + Pairing + Separation + Union + PowerSet

+ Infinity + Replacement + Regularity + Choice,

while ZF := ZFC − Choice. Standard modern model and proof theory will
be invoked for the semantic interpretation and syntactic manipulation of
first-order — and higher-order, when necessary — formulae, although proofs
included in this essay will be presented informally. Elementary results, as
covered in the first two chapters of Jech’s book, will be assumed. On this
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foundation, I shall first mention a few examples of the large cardinal ax-
ioms that will be involved in subsequent discussions, based on expositions in
Kanamori’s book The Higher Infinite ([24]):

Inaccessible and Mahlo cardinals

Definition 3.1 (Limit cardinals). A cardinal κ ∈ Card is a weak limit
cardinal if it is neither a successor cardinal or zero; κ is a strong limit cardinal
if it is a weak limit cardinal and additionally, for any cardinal λ < κ, it follows
that 2λ < κ.

Definition 3.2 (Regular cardinals). A cardinal κ ∈ Card is regular if it
equals to its own cofinality, that is, any unbounded subset C ⊆ κ has cardi-
nality κ.

Definition 3.3 (Inaccessible cardinals). A cardinal κ ∈ Card is weakly in-
accessible if it is an uncountable, regular, weak limit cardinal; κ is (strongly)
inaccessible if it is an uncountable, regular, strong limit cardinal.

Obviously, inaccessible cardinals are also weakly inaccessible. Following con-
vention, weakly inaccessible cardinals are the first large cardinals we look at
on the hierarchy of large cardinals. This hierarchy then extends, through a
few more technical constructions that I will not cover in this essay, such as
α-inaccessibility, to the Mahlo cardinals:

Definition 3.4 (Stationary sets). Let κ ∈ Card be a cardinal. A set S ⊆ κ
is a club2 in κ if S is unbounded and, for any bounded subset A ⊊ S,
supA ∈ S.

S ⊆ κ is stationary in κ if it intersects every club in κ.

Definition 3.5 (Mahlo cardinals). A cardinal κ ∈ Card is Mahlo if the set

{λ ∈ κ : λ is an inaccessible cardinal}

is stationary in κ.

Proposition 3.6. Let κ ∈ Card be a Mahlo cardinal, then κ is inaccessible.

Proof. Let R = {λ ∈ κ : λ is an inaccessible cardinal}. Firstly, κ is uncount-
able because R is non-empty.

To check that κ is regular, suppose otherwise that S ⊆ κ is unbounded, yet
|S| < κ. |S| must be uncountable because otherwise one will be able to write
κ as a limit of a non-decreasing sequence s0 < s1 < · · · of elements in S and
thus

κ = sup {sn + 1 : n ∈ ω}
where each sn + 1 ̸∈ R. Now, consider the limit points in S \ |S|, that is,

S ′ =
{
λ ∈ S : λ > |S|, λ = supA for some A ⊆ S \ {λ}

}
2The word “club” is an abbreviation for “closed unbounded”.
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where S is the closure of S in the order topology and
∣∣S∣∣ = |S|. S ′ is a club

in κ but contains no regular cardinals, so S ′ ∩R = ∅, a contradiction.

Finally, to check that κ is a strong limit, it suffices to check that for any
cardinal λ < κ, it follows that 2λ < κ. Here κ is a limit ordinal and R is
unbounded in κ, thus there exists an inaccessible cardinal δ < κ such that
λ < δ. It follows that 2λ < δ < κ.

The weakly inaccessible, inaccessible and Mahlo cardinals, along with a few
other types of cardinals not covered here, are sometimes classified as the
“small” large cardinals:

Definition 3.7. The φ-cardinals, where φ denotes “weakly inaccessible”,
“inaccessible”, “Mahlo” or other conditions, is said to be small if, suppose
that the formulae “κ is a φ-cardinal” is consistent, “L ⊨ κ is a φ-cardinal”
is also consistent, where L is the Gödel constructible universe.

Otherwise, the φ-cardinals are said to be large.

Proposition 3.8. Let φ denote a condition “weakly inaccessible”, “inac-
cessible” or “Mahlo” and suppose that κ is a φ-cardinal. For an inner
model M , that is, a transitive model of ZFC containing On, it follows that
M ⊨ κ is a φ-cardinal.

Specifically, it follows that L ⊨ κ is a φ-cardinal.

Proof. Both “κ is a cardinal” and “κ is a regular cardinal” are Π0
1-formulae.

Now, suppose that κ is also a weak limit, yet M ⊨ ∃λ ∈ Card κ = λ+. Then
|λ| < κ and thus |λ|+ < κ. Denote δ = |λ|+ and it follows that

M ⊨ λ < δ < κ,

contradicting M ⊨ λ+ = κ. Thus, if κ is a weakly inaccessible cardinal, then

M ⊨ κ is a weakly inaccessible cardinal.

When κ is inaccessible, it suffices to show that also M ⊨ κ is a strong limit.

For any λ ∈ κ, obviously PM(λ) ⊆ P(λ), i.e.
(
2|λ|
)M ≤ 2|λ| < κ. Thus

indeed κ is a strong limit in M .

Finally, for a Mahlo cardinal, simply notice that

{λ ∈ κ : λ is an inaccessible cardinal}

⊆
{
λ ∈ κ : (λ is an inaccessible cardinal)M

}
by above and “S is stationary in κ” is a Π0

1-formulae.

It follows as an immediate corollary that the weakly inaccessible, inaccessible
and Mahlo cardinals are all small.
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“Large” large cardinals

I will also give the example of the simplest “large” large cardinal in the
introductory Chapter 1 in Kanamori’s book [24]:

Definition 3.9 (Ultrafilters). Let x be a set. A filter F on x is a subset of
P(x) satisfying the following properties:

• ∅ ̸∈ F ;

• for u, v ∈ F , also u ∩ v ∈ F ;

• for u ∈ F and some v ⊆ x such that u ⊆ v, also v ∈ F .

An ultrafilter U on x is a filter on x such that, for any y ⊆ x, either y ∈ U
or x \ y ∈ U .

Definition 3.10. An ultrafilter U on x is principal if there exists some a ∈ x
such that, for any subset y ⊆ x, y ∈ U if and only if a ∈ y.

Otherwise, U is non-principal.

Definition 3.11. Let U be an ultrafilter on x. For a cardinal λ ∈ Card, U
is λ-complete if, for any subset S ⊆ U such that |S| < λ,

⋂
S ∈ U .

Definition 3.12 (Measurable cardinals). A cardinal κ ∈ Card is measurable
if κ is uncountable and there is a κ-complete non-principal ultrafilter on κ.

The measurable cardinals first arose from the study of measures:

Definition 3.13 (Measures). Let x be a set. A (non-trivial) measure on x
is a function µ : P(x) → [0, 1] such that

• µ(x) = 1;

• µ({a}) = 0 for each a ∈ x;

• for pairwise disjoint sets {yn : n ∈ ω} ⊆ P(x),

µ

(⋃
n∈ω

yn

)
=
∑
n∈ω

µ(yn).

For a cardinal λ, µ is additionally λ-additive if, for any γ ∈ λ and pairwise
disjoint sets {yα : α ∈ γ} ⊆ P(x),

µ

(⋃
α∈γ

yα

)
=
∑
α∈γ

µ(yα).

Here, κ-complete non-principal ultrafilters correspond to {0, 1}-valued3 κ-

3{0, 1}-valued κ-additive measures further represent real-valued measures with atoms,
that is, where there exists some y ⊆ x such that the measure µ(y) > 0 and, for any
subset z ⊆ y, either µ(z) = 0 or µ(z) = µ(y). These measures are the more interesting
ones compared to their atomless counterparts in the study of large cardinals. Further
discussions can be found in detail in section 27 of Jech’s book [23].
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additive measures, where, for some such ultrafilter U , the associated measure
is given by

µU(y) =

{
1 if y ∈ U,

0 if y ̸∈ U

for each y ⊆ x. Hence this large cardinal condition is named “measurable”.

In order to show that measurable cardinals are “large”, I will mention an
equivalent way of characterising such cardinals through elementary embed-
dings:

Definition 3.14 (Elementary embeddings). Let M be a transitive class of
sets and j : V → M be a class function. j is an elementary embedding,
denoted j : V ≺ M , if, for any (first-order) formula φ(v1, . . . , vn) and any
sets x1, . . . , xn,

V ⊨ φ[x1, . . . , xn] if and only if M ⊨ φ[j(x1), . . . , j(xn)].

Lemma 3.15. Let j : V ≺M be an elementary embedding. For any ordinal
κ ∈ On, j(κ) is also an ordinal and j(κ) ≥ κ.

Proof. κ ∈ On is a first-order assertion, thus it follows from the elementarity
of j that j(κ) ∈ On. It also follows from the elementarity that j(∅) = ∅
and, for ordinals λ < κ, j(λ) < j(κ). Therefore, j(κ) ≥ κ for any ordinal
κ ∈ On by transfinite induction.

Definition 3.16. Let j : V ≺ M be an elementary embedding. Suppose
that j is not identity on On, then the critical point of j is

crit(j) = min{κ ∈ On : j(κ) ̸= κ}.

The key characterisation I wish to prove is that:

Theorem 3.17. Some ordinal α ∈ On is a measurable cardinal if and only
if it is the critical point of some elementary embedding j : V ≺M .

Proof. The backward direction is straightforward. First notice that j does
not move the finite ordinals and ω, so crit(j) > ω. Let U be a subset of
P(crit(j)) given by

x ∈ U if and only if x ⊆ crit(j) and crit(j) ∈ j(x).

I shall show that U is a crit(j)-complete4 non-principal ultrafilter:

The fact that U is a filter follows from the corresponding facts

4I have not shown that crit(j) is a cardinal. However, notice that the definition of
λ-completeness extends naturally to ordinals in the degenerate way that non-principal
ultrafilters cannot be λ-complete for some λ ∈ On \ Card because then |λ| < λ. I will in
fact use this observation later to justify that crit(j) is indeed a cardinal.
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• j(∅) = ∅;

• j(u ∩ v) = j(u) ∩ j(v);

• u ⊆ v implies j(u) ⊆ j(v),

which all follow from the elementarity of j. U is an ultrafilter because
similarly

crit(j) ∈ j(crit(j)) = j(x) ∪ j(crit(j) \ x)

for any x ⊆ crit(j), thus either x ∈ U or crit(j) \ x ∈ U .

U is non-principal because, if x = {α} ⊆ crit(j) is a singleton, then

j(x) = {j(α)} = {α} = x.

Thus crit(j) ̸∈ j(x). Finally U is κ-complete because, for some S ⊆ U such
that |S| < crit(j), let f : |S| → S be a bijection. By the elementarity of j,

j

 ⋂
α∈|S|

f(α)

 =
⋂

α∈|S|

j(f)(α) =
⋂

α∈|S|

j(f(α)).

Thus crit(j) ∈ j
(⋂

α∈|S| f(α)
)
.

Finally, observe that crit(j) must be a cardinal because, otherwise, no ultra-
filter can be crit(j)-complete and non-principal.

The forward direction is more complicated and I will give a sketch of the
proof, found as proposition 5.4 in Kanamori’s book [24]:

Let κ ∈ Card be a measurable cardinal and U ⊆ P(κ) be a κ-complete non-
principal ultrafilter on κ. We wish to realise the model-theoretic structure
of an ultraproduct Πλ∈κV/U as a class of sets. This is the quotient of the
class of functions f : κ→ V by the equivalence relation

f ∼ g if and only if {λ ∈ κ : f(λ) = g(λ)} ∈ U.

For each function f : κ→ V , using Scott’s trick in [43] and let its equivalence
class be represented by the set

(f)0U = {g ∈ Vκ : g ∼ f, rank(g) = mf} ,

where rank(x) = min{α ∈ On : x ∈ Vα} is the rank of a set in the stan-
dard cumulative hierarchy and mf = min{rank(g) : g ∈ Vκ , g ∼ f} is the
minimum rank of any element in the equivalence class of f .

Thus, let Πλ∈κV/U =
{
(f)0U : f ∈ Vκ

}
and define the ∈-relation on it as

(f)0U EU (g)0U if and only if {λ ∈ κ : f(λ) ∈ g(λ)} ∈ U.

12



It follows from model theory that, for any (first-order) formulae φ(v1, . . . , vn)
and f1, . . . , fn ∈ Vκ ,

⟨Πλ∈κV/U,EU⟩ ⊨ φ
[
(f1)

0
U . . . , (fn)

0
U

]
if and only if {λ ∈ κ : φ[f1(λ), . . . , fn(λ)]} ∈ U.

Thus, it can be easily verified that the relation EU is set-like and well-
founded. By Mostowski collapse, there exists a class M ⊆ V such that
⟨Πλ∈κV/U,EU⟩ ∼= ⟨M,∈⟩.

Finally, let class function j : V → M represent mapping each set x to the
constant function y 7→ x in Vκ . Then j is clearly an elementary embedding.
Notice that, suppose α ∈ κ is the least ordinal such that j(α) > α, let
f : κ→ V be such that (f)0U represent α in the ultraproduct, then

κ \
⋂
β∈α

{λ ∈ κ : f(λ) ̸= β} = {λ ∈ κ : f(λ) ∈ α} ∈ U.

Thus {λ ∈ κ : f(λ) = β} ∈ U for some β ∈ α, i.e. (f)0U represents j(β). In
other words, j(β) = α > β, contradicting the minimality of α. Therefore,
for any α < κ, it must follow that j(α) = α.

It suffices now to verify that j(κ) > κ. To prove this, we consider the identity
function id : κ → κ and the ordinal δ that corresponds to (id)0U . Obviously
δ < j(κ). On the other hand, for each α < κ, α = j(α) < δ. Thus δ ≥ κ.
Therefore, it follows that κ < j(κ). Indeed κ = crit(j).

Corollary 3.18. If there exists a measurable cardinal, then V ̸= L.

Proof. Let κ be the least measurable cardinal and consider the corresponding
elementary embedding j : V ≺ M given in Theorem 3.17. Here, M is a
transitive model of ZFC containing On by Lemma 3.15, thus it follows5 that
L ⊆M .

Since κ = crit(j) is the least measurable cardinal, by elementarity of j,

M ⊨ j(κ) is the least measurable cardinal.

As j(κ) ̸= κ, it must follow that L ⊆M ⊊ V , i.e. V ̸= L.

It follows that L ̸⊨ there exists a measurable cardinal and thus measurable
cardinals are “large”. To demonstrate that measurable cardinals indeed lie
above inaccessible and Mahlo cardinals on a linear hierarchy, I will also
mention the following results:

Proposition 3.19. Let κ ∈ Card be a measurable cardinal, then κ is inac-
cessible.

5It is an elementary result that Gödel’s constructive universe L is contained in any
inner model of ZFC. See Theorem 32 in section 12 of [23] for the proof.
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Proof. Let U be a κ-complete non-principal ultrafilter on κ. Suppose that
C ⊆ κ is unbounded, yet |C| < κ. For each α ∈ C, |α| < κ. Thus, if α ∈ U ,
then

∅ =
⋂

({α} ∪ {κ \ {δ} : δ ∈ α}) ∈ U.

Therefore, κ \ α ∈ U instead. However, then

∅ =
⋂
α∈C

κ \ α ∈ U.

By contradiction, one must have |C| = κ, i.e. κ is regular.

To show that κ is additionally a strong limit, suppose that some cardinal
λ < κ, yet 2λ ≥ κ. Consider some arbitrary injection f : κ→ P(λ) and sets

xα = {δ ∈ κ : α ∈ f(δ)} ,
yα = {δ ∈ κ : α ̸∈ f(δ)}

for α ∈ λ. Notice that, for each α ∈ λ, exactly one of xα and yα lies in U .
Thus, define

zα =

{
xα if xα ∈ U,

yα if yα ∈ U,

then z =
⋂

α∈λ zα ∈ U . It follows that, for each α ∈ κ, α ∈ z if and only if

f(α) = {β ∈ κ : xβ ∈ U} .

Since f is injective, z contains at most one element, but then a non-principal
ultrafilter U cannot contain z. Thus, κ is a strong limit by contradiction.

Lemma 3.20. Let j : V →M be an elementary embedding and C ⊆ crit(j)
be a club in crit(j), then crit(j) ∈ j(C).

Proof. For each α ∈ C, j(α) = α. Thus C ⊆ j(C). Since C is unbounded
in crit(j) and j(C) is a closed subset of j(crit(j)) > crit(j), it follows that
crit(j) ∈ j(C).

Proposition 3.21. Let κ ∈ Card be a measurable cardinal, then κ is Mahlo.

Proof. Let j : V ≺M be the corresponding elementary embedding such that
κ = crit(j). Let R = {λ ∈ κ : λ is an inaccessible cardinal}, then

j(R) =
{
λ ∈ j(κ) : (λ is an inaccessible cardinal)M

}
.

Since M is an inner model, by Proposition 3.19 and Proposition 3.8, κ ∈
j(R). Now, for any club C ⊆ κ, it follows from Lemma 3.20 that

κ ∈ j(C) ∩ j(R) = j(C ∩R).

Thus C ∩R is non-empty and R is indeed stationary.
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Finally, I will define the Woodin cardinals, a type of large cardinals heavily
studied in the past several decades, which will serve as a key example to
many arguments in subsequent sections. They were first introduced in [44]
in the study of regularity properties of real numbers, which will be explained
later in subsection 5.1:

Definition 3.22 (Woodin cardinals). A cardinal κ ∈ Card is Woodin if, for
any function f : κ → κ, there exists a cardinal α ∈ κ and an elementary
embedding j : V ≺M such that

• f [α] ⊆ α,

• crit(j) = α,

• Vj(f)(α) ⊆M .

For now, I will point out that Woodin cardinals are outliers in a certain
ways in the hierarchy of large cardinals examined so far: as commented in
the remark after Theorem 26.14 in [24], the least Woodin cardinal is not
measurable.

However, it follows immediately from the definition that a Woodin cardinal is
preceded by measurable cardinals. Thus, the existence of a Woodin cardinal
implies the existence of a measurable cardinal. So a Woodin cardinal is also
a “large” large cardinal and the large cardinals I surveyed in this section all
lie on the following linear hierarchy:

weakly inaccessible, inaccessible,Mahlo,measurable,Woodin, . . .

satisfying the property that, if φ, ψ are two conditions on the hierarchy
with φ placed higher than ψ, then the existence of a φ-cardinal implies
the existence of a ψ-cardinal. This is a fragment of a longer, roughly linear
hierarchy of large cardinals, displayed on page 472 of [24]. In the next section,
I will proceed to explain that the hierarchy is also that of derivability and
interpretability and, as a consequence, a philosophical commitment to the
existence of large cardinals requires careful justification.

3.2 Independence and interpretability

The large cardinals are distinct from other (often smaller) cardinals studied
in set theory in such a way that they are intuitively plausible and have
many interesting implications, as I will demonstrate in later sections, but
their existence is not derivable from ZFC. Specifically, the large cardinals
examined in the previous section are all weakly inaccessible and it suffices
to observe the following results:

Lemma 3.23. Let κ ∈ Card be a weakly inaccessible cardinal, then Lκ ⊨
ZFC, where Lκ is the corresponding stage in the hierarchy of Gödel’s con-
structible universe.
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Proof. First notice that when κ is a cardinal,

Vκ ⊨ ZFC− PowerSet− Replacement.

When κ is additionally inaccessible, it is easy to show that, for any subset x ⊆
Vκ, x ∈ Vκ if and only if |x| < κ. It follows that Vκ ⊨ PowerSet+Replacement
additionally.

Now, if κ is weakly inaccessible, by Proposition 3.8, it follows that L ⊨
κ is weakly inaccessible. I use the standard result that L ⊨ GCH, shown as
Theorem 34 in section 13 of Jech’s book [23], thus it follows that

L ⊨ κ is strongly inaccessible.

By the argument above, L ⊨ (Vκ ⊨ ZFC), i.e. Lκ ⊨ ZFC as desired.

Theorem 3.24. ZFC + ∃κ ∈ Card κ is weakly inaccessible ⊢ Con(ZFC).

Proof. Assume the existence of a weakly inaccessible cardinal κ. I shall prove
the result by contradiction and suppose otherwise that ZFC proves ⊥. Using
Lemma 3.23, it follows6 that Lκ ⊨ ⊥. This is a contradiction and thus ZFC
must be consistent.

Corollary 3.25. ZFC ⊬ ∃κ ∈ Card κ is weakly inaccessible.

Proof. Suppose that ZFC ⊢ ∃κ ∈ Card κ is weakly inaccessible, then by
Theorem 3.24, we immediately have

ZFC ⊢ Con(ZFC).

This contradicts Gödel’s second incompleteness theorem.

The corollary says that ZFC cannot guarantee the existence of any weakly
inaccessible cardinal. Thus, a claim of the form “there exists a φ-cardinal”,
where φ denotes “weakly inaccessible”, “inaccessible”, “Mahlo” or other
conditions introduced in the previous section, can only be an axiom instead
of a theorem of the standard set theory. They are known as the large cardinal
axioms and generate the possibility of a pluralist perspective of set theory.

Here, I am primarily contrasting between the Platonist anti-pluralist position
that commits to a definite collection of abstract entities that one recognises in
mathematics, and a Platonist pluralist position that believes in an ontology,
where, for every consistent formal theory in mathematics, there is a distinct
collection of entities that fit the description of such a theory. However,

6To be precise, I shall comment that the entire discussion here must happen internally
to set theory, where formulae are treated through Gödel arithmetisation. It is a standard
fact that there are sufficient resources in first-order set theory to define the claim “x ⊨ Γ”,
where x is a set and Γ is a set of (arithmetised) formulae.
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such a distinction can be found among anti-realists alike between those who
believe in a unique objective characterisation of the mathematical structures
and those who allow an artificial choice between multiple such accounts and
these disputants will be equally vulnerable to many arguments I shall present
below.

Essentially, an anti-pluralist now faces the question of whether the large car-
dinal axioms hold in his “collection of sets”, which can no longer be answered
by widely-accepted descriptive frameworks like ZFC and mathematical rea-
soning only. The observation thus persuades one to commit to a pluralist’s
more appealing counter-proposal, that is, an ontology of multiple different
universes, each of which, as a whole, satisfies the axioms of ZFC, while these
collections disagree on whether certain types of large cardinals exist. Indeed,
given a large cardinal axiom φ, a model theorist would, given the soundness
of the first-order formal system and results above, claim to work under the
following hypothesis when needed:

Hypothesis. There exist structures M,N in the language of set theory such
that

M ⊨ ZFC + φ, N ⊨ ZFC + ¬φ.

The pluralist’s perspective in the philosophy of set theory is simply a literal
reading of this entirely mathematical claim.

The problem of interpretability

In addition to this pluralism debate surrounding any alternative axioma-
tisations of set theory — or even the axiom of choice within ZFC — the
problem of whether to accept a large cardinal axiom involves a more signifi-
cant commitment. Namely, ZFC+∃κ ∈ Card κ is weakly inaccessible is not
interpretable in ZFC, where

[for arbitrary theories S, S ′,] S ′ is interpretable in S if, roughly
speaking, the primitive concepts and the range of the variables
of S ′ are definable in S in such a way as to turn every theorem
of S ′ into a theorem of S,

using Chapter 6 of Lindström’s book Aspects of Incompleteness ([39]) as a
standard reference. A complicated, more precise definition of interpretation
can also be found at the beginning of that chapter. I shall follow Lindström’s
notation of S ′ ≤ S when S ′ is interpretable in S, and S ′ ≡ S when both
S ′ ≤ S and S ≤ S ′.

The following immediate consequence of his definitions, demonstrated as
Theorem 2 in chapter 6 of the book, is relevant here:

Fact. For a theory T that incorporates sufficient amounts of arithmetic,
T + Con(T ) ̸≤ T .
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Specifically, in Theorem 3.24 above, it is proven that

ZFC + ∃κ ∈ Card κ is weakly inaccessible ⊢ ZFC + Con(ZFC),

thus it follows that ZFC < ZFC + ∃κ ∈ Card κ is weakly inaccessible in
terms of interpretability.

One can compare this to a different famously disputed claim in set theory,
the Continuum Hypothesis (CH):

2ω = ω1.

Gödel showed in [19] that the constructible universe L ⊨ ZFC + CH while
Cohen established a model of ZFC + ¬CH in [8], [9] through the method
of forcing. The proofs, known nowadays as the dual methods of inner and
outer models, effectively imply that

ZFC ≡ ZFC + CH ≡ ZFC + ¬CH.

In other words, given any universe of ZFC, one can construct a class of sets as
a model that satisfies CH and another that satisfies ¬CH, no matter whether
CH holds in the original universe. While it can still be put to philosophi-
cal debate whether the axiom should be true or false in an anti-pluralist’s
conception of sets, or that two collections of sets exist independently as in
a pluralist perspective, parties in the dispute can often agree that there are
groups of mathematical entities that satisfy either ZFC+CH or ZFC+¬CH
— or fictional depictions of the said structures, for an anti-realist. Therefore,
it is a reasonable mathematical endeavour to study either of the two incom-
patible structures regardless of one’s choice of a philosophy of mathematics.

The situation is different for a large cardinal axiom because, as commented
above, large cardinal axioms are not interpretable in ZFC. In fact, addition-
ally, large cardinals higher up in the hierarchy, as displayed at the end of the
last section, are often7 not interpretable in theories asserting the existence
of smaller large cardinals:

Proposition 3.26. ZFC + ∃κ ∈ Card κ is Mahlo ⊢ Con(ZFC + ∃κ ∈ Card
κ is inaccessible).

Proof. Let κ be the smallest Mahlo cardinal. A same argument as in the
proof of Lemma 3.23 shows that Vκ ⊨ ZFC. Vκ must contain an inaccessible
cardinal because the set

{λ ∈ κ : λ is an inaccessible cardinal} ⊆ Vκ

is stationary in κ, hence non-empty. The remainder of the proof proceeds
exactly as Theorem 3.24.

7This can fail at some of the more nuanced steps in the hierarchy, though. As an
example, the existence of an inaccessible cardinal can be interpreted in the theory ZFC+
∃κ ∈ Card κ is weakly inaccessible because, as seen in the proof of Lemma 3.23, if κ is a
weakly inaccessible cardinal, then L ⊨ κ is an inaccessible cardinal.
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It follows that ZFC+∃κ ∈ Card κ is Mahlo is not interpretable in the theory
ZFC+∃κ ∈ Card κ is inaccessible. Similar results can be established, albeit
with more difficult proofs, for cardinals higher up in the hierarchy. For
example, in section 30 of Jech’s book [23], he established as Corollary 3 that

Proposition 3.27. If there exists a measurable cardinal, then every un-
countable cardinal is a Mahlo cardinal in L.

Then, given some measurable cardinal κ, Lκ will be a model of ZFC con-
taining Mahlo cardinals, thus justifying the consistency of ZFC + ∃κ ∈
Card κ is Mahlo. Therefore, likewise,

ZFC + ∃κ ∈ Card κ is measurable ⊢ Con(ZFC + ∃κ ∈ Card κ is Mahlo)

and a theory of sets with a Mahlo cardinal cannot interpret ZFC + ∃κ ∈
Card κ is measurable.

A Carnapian philosophy of set theory need not worry about this problem.
As I have just pointed out in the Carnap versus Gödel discussion, if the
distinct theories combining ZFC and large cardinal axioms are each seen as
a linguistic framework to talk about sets, then Carnap did not insist on a
formal proof of consistency. He would view the discovery of inconsistency
in an axiom system and the subsequent rejection of such a framework as an
entirely pragmatic matter.

To most other pluralists, who do not forgo a consistency requirement in
their theory — that is to say, they insist that there must be a reasonable
argument for a theory’s consistency before it can be considered in their
plurality of set theories, as Hilbert and Gödel maintained — this is mildly
problematic, as a pluralist is now also responsible for demonstrating the
consistency of a large cardinal axiom he wishes to introduce. There does
exist natural large cardinal axioms that are inconsistent with ZFC, such as
the following condition introduced by William Reinhardt in his PhD thesis
[42], now known as the Reinhardt cardinals:

Definition 3.28. A cardinal κ ∈ Card is Reinhardt if it is the critical point
of some elementary embedding j : V ≺ V .

As Kunen proved in his 1971 paper [30], the existence of a Reinhardt cardinal
is inconsistent with the axiom of choice:

Proposition 3.29. If j : V ≺ V is an elementary embedding, then j is
identity. Effectively, assuming ZFC, no Reinhardt cardinals can exist.

Proof. To begin, an elementary embedding that is not identity must move
an ordinal. A proof of this standard fact can be found, for example, as
proposition 5.1 in section 5 of Kanamori’s book [24]. Now, suppose that an
elementary embedding j : V ≺ V with a critical point κ = crit(j) exists. Let
λ = sup {jn(κ) : n ∈ ω}. It follows from elementarity of j that

j({jn(κ) : n ∈ ω}) =
{
jn+1(κ) : n ∈ ω

}
,
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so j(λ) = λ.

Kunen then cited a theorem of Erdős–Hajnal in [10] that there exists a
function f : λω → λ, where λω refers to the set of functions ω → λ, such
that for any A ⊆ λ, if |A| = λ, then the image f [ Aω ] = λ.

Consider A = {j(δ) : δ ∈ λ}. Then, by elementarity of j, precisely

Aω = {j(t) : t is a function ω → λ} .

Since f is surjective, it follows that j(f)[ Aω ] = j(λ) = λ. Thus, for some
t : ω → λ,

j(f(t)) = j(f)(j(t)) = κ.

However, the critical point κ cannot lie in the range of j. A contradiction.

The risk of inconsistency means that the majority of pluralist philosophers
of mathematics seek justification for the large cardinal axioms as well. Many
pluralists are ultimately realists and committing to the existence of a collec-
tion of sets satisfying a contradictory theory as exemplified above demands
a philosophy like that of the “impossible” worlds, which is a hard-to-defend
position with an overly bloated ontology.

However, I only called this a mild problem for the pluralists because, after
all, a formal proof of consistency in Hilbert’s sense is simply impossible for
any known axiomatisation that interprets enough of PA, as Gödel’s second
incompleteness theorem claims. The general belief in the consistency of ZFC
among the mathematicians nowadays is instead due to the thorough studies
on the topic — and the fact that ZFC has been used to faithfully interpret
many of the older areas of mathematics, like number theory and real analysis,
that are even more believably consistent — and thus, inductively, a discovery
of inconsistency in ZFC is seen as an extremely unlikely event. A pluralist
supporting the large cardinal axioms can similarly argue that, despite a lack
of equiconsistency with ZFC, many large cardinals have been extensively
researched on in the past few decades. The many intuitive consequences and
strong links to other areas like the descriptive set theory of the projective
sets of reals, which I will discuss in more detail in subsection 5.1, provide
support for their consistency almost as powerful as the case for ZFC. In
fact, many set theorists are now as confident about the consistency of the
majority of natural large cardinal axioms as they are about that of ZFC.
For example, as Koellner cited in his essay [27],

at the Gödel centenary in Vienna in 2006, Woodin announced
that should anyone prove one of these theories8 inconsistent he
would resign his post and demand that his position be given to
the person who established the inconsistency.

8Here, Koellner is referring to the theory ZFC + ADL(R), which is roughly equivalent
to asserting the existence of many Woodin cardinals.
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Therefore, the interpretability results are still mainly an argument against
an anti-pluralist. If an anti-pluralist only manages to justify ZFC or a short
initial segment of the hierarchy of large cardinals, then he has no other re-
sort, such as utilising a sub-structure of his collection of sets, when he wishes
to adopt a new large cardinal axiom that represents a rise in interpretation
strength. In order to maintain that his ontology of sets is a sufficiently
powerful tool for many constructions in set theory today, he is tasked with
providing metaphysical justifications for each and every large cardinal he in-
tends to commit to. This is indeed a formidable quest for many perspectives
of the philosophy of mathematics.

The next sections shall be dedicated to this problem and the classical argu-
ments brought up to justify the large cardinal axioms. I will analyse and
argue that these approaches provide essentially pragmatic reasons: they are
nowhere near satisfactory for an anti-pluralist, but fit nicely into Carnap’s
perspective of supporting the adoption of a corresponding linguistic frame-
work.

4 Arguments for large cardinal axioms

4.1 Reflection principles

One of the heavily investigated ways to justify the large cardinal axioms is
through the more intuitive reflection principles, that is,

Definition 4.1. Let Γ be a collection of formulae, then Γ-reflection refers
to the axiom schema of all statements of the following form:

∀x
(
φ(x) → ∃α ∈ On

(
x ∈ V n

α ∧ φVα(x)
))
,

where x is a finite list of n variables, φ ∈ Γ and φVα is the relativisation9 of
φ to the stage Vα in the cumulative hierarchy of sets.

Such a schema is essentially asserting that the totality of all sets V is inde-
finable in such a way that any formulae would not be able to distinguish the
totality from a proper initial segment in the hierarchy. Gödel, for example,
had advocated for using such principles as a central motivation for axiomatic
set theory, as suggested in [48]:

Generally Gödel believes that in the last analysis every axiom of
infinity should be derived from the (extremely plausible) principle
that V is undefinable, where definability is to be taken in more
and more generalized and idealized sense.

9The relativisation invoked here is the standard notion in set theory such that V ⊨ φVα

if and only if Vα ⊨ φ. I shall account for the relativisation of a sentence of higher-order
in more details later.
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where, by the term “axioms of infinity”, he also included the large cardinal
axioms. It is indeed true to maintain that many of the axioms of ZFC are
derivable from the reflection principles. For example,

Proposition 4.2. ZFC− Infinity + ∆0
0-reflection ⊢ Infinity.

Proof. Simply take the instance of reflection principle

Ind(V ) → ∃α ∈ On Ind(Vα)

where Ind(A) := ∅ ∈ A ∧ ∀x ∈ A x ∪ {x} ∈ A asserts that the class A is
inductive. Since the axioms of pairing and union imply Ind(V ), it follows
that ∃α ∈ On Ind(Vα), i.e. there exists an infinite set.

However, these first-order instances are very weak and cannot be invoked to
support axioms non-derivable from ZFC. In Jech’s book [23], the following
result is proven as Theorem 29 in section 11:

Theorem 4.3. Let φ be a formula. For each (set)M0 there is a limit ordinal
α such that M0 ⊆ Vα and Vα reflects φ, that is, for any tuple of elements
a ∈ V n

α

Vα ⊨ φ[a] if and only if φ[a].

In other words, for any collection of first-order formulae Γ, ZFC+Γ-reflection
is precisely the same theory as ZFC. Therefore, to realise Gödel’s hope of
deriving large cardinal axioms from reflection principles, one must utilise in-
stances where the reflected formula φ is higher-order. I shall use Koellner’s
paper [26] as a main reference to survey the contemporary developments
in this area before commenting on the philosophical plausibility of the ap-
proach.

To begin, suppose that a higher-order language is given where, for each n ≥
2, variables X(n), Y (n), Z(n), . . . of the nth order are used. The higher-order
reflection principles are evaluated using the following formal characterisation
of relativisation of higher-order formulae:

Definition 4.4 (Relativisation). Let α ∈ On and φ be a higher-order for-
mula. The relativisation φVα of φ to the transitive class Vα is produced by
replacing each first-order quantification

∀x by ∀x ∈ Vα; ∃x by ∃x ∈ Vα

and each higher-order quantification

∀X(n) by ∀X(n) ∈ Vα+n−1; ∃X(n) by ∃X(n) ∈ Vα+n−1

for each n ≥ 2. The relativised formula is explicitly a first-order formula.

Just like proper classes, an nth order parameter A(n) is represented by a
(possibly parametrised) formula φ

(
X(n−1)

)
with one free variable X(n−1)

such that B(n−1) ∈ A(n) if any only if φ
[
B(n−1)

]
holds. The relativisation of

a parameter is defined recursively:
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• let A(2) be a second-order class, its relativisation10 to the transitive
class Vα is simply A(2),Vα = A(2) ∩ Vα ∈ Vα+1;

• for n ≥ 2, the relativisation of some (n+ 1)th parameter A(n+1) is

A(n+1),Vα =
{
B(n),Vα : B(n) ∈ A(n+1)

}
∈ Vα+n.

Definition 4.5. Let Γ be a collection of higher-order formulae, then Γ-
reflection refers to the axiom schema of all statements of the following form:

∀x ∀X(n1)
1 · · · ∀X(nk)

k

(
φ
(
x, X

(n1)
1 . . . , X

(nk)
k

)
→ ∃α ∈ On

(
x ∈ V n

α ∧ φVα

(
x, X

(n1),Vα

1 . . . , X
(nk),Vα

k

)))
,

where x is a finite list of n variables, X
(n1)
1 , . . . , X

(nk)
k are higher-order vari-

ables and φ ∈ Γ.

Immediately, one should observe that reflection principles given in this man-
ner are not always consistent with ZFC. I shall cite Koellner’s counterex-
ample:

Proposition 4.6. Let the formula

φ
(
X(3)

)
= ∀Y (2) ∈ X(3) ∃α ∈ On Y (2) ⊆ α.

denote the concept “every element in X(3) is a bounded class of ordinals”.
Then the reflection principle

∀X(3)
(
φ
(
X(3)

)
→ ∃α ∈ On φVα

(
X(3),Vα

))
is false, assuming ZFC.

Proof. Let A(3) = {{δ : δ < α} : α ∈ On} be a third-order parameter. Then
φ
[
A(3)

]
holds by definition. However, for any α ∈ On,

A(3),Vα = {α ∩ β : β ∈ On} = α + 1 ∈ Vα+2.

Here, α ∈ A(3),Vα , yet Vα ⊭ α is a bounded class. Thus the reflection princi-
ple above is false.

As identified in both Tait’s work [47] and Koellner’s follow-up [26], the well-

behaved collection of formulae to reflect on are the Γ
(2)
n -formulae, which are

positive in the following sense:

10Here, I follow Koellner [26] and define the relativisation of a second-order parameter
through an explicit intersection instead of the relativisation of its defining formula. The
consideration is that a second-order variable X(2) may range over undefinable collections
of sets and one cannot define the relativisation of X(2) uniformly if a defining formula is
required.
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Definition 4.7. Let φ be a formula involving only first-order quantification.
φ can have higher-order free variables. φ is said to be positive if it is built up
by connectives ∧, ∨ and quantifiers from atomic formulae of the form x = y,
x ̸= y, x ∈ y, x ̸∈ y, x ∈ Y (2), x ̸∈ Y (2) and X(n) = Y (n), X(n) ∈ Y (n+1) for
n ≥ 2.

For 0 < n < ω, the Γ
(2)
n -formulae are of the form

∀X(2)
1 ∀Y (ℓ1)

1 · · · ∀X(2)
n ∀Y (ℓn)

n φ

where φ is a positive formula involving only first-order quantifications, but
can have other free variables of any order. ℓ1, . . . , ℓn are arbitrary natural
numbers.

In general, for m > 2 and 0 < n < ω, the Γ
(m)
n -formulae are of the form

∀X(m)
1 ∀Y (ℓ1)

1 · · · ∀X(m)
n ∀Y (ℓn)

n φ

where φ is a Γ
(m−1)
k -formula for some k > 0 and ℓ1, . . . , ℓn are arbitrary

natural numbers.

Notice that in a positive formula, one is essentially avoiding the components
X(n) ̸= Y (n) and X(n) ̸∈ Y (n+1) in its canonical disjunctive normal form.
Since a second-order logic is usually taken to be extensional, that is,

X(2) = Y (2) ≡ ∀x
(
x ∈ X(2) ↔ x ∈ Y (2)

)
,

thus any second-order formulae with only first-order quantifications involves
no atomic relation expression between two higher-order variables and is im-
mediately positive. I will first show that adding such Γ

(2)
n -reflection axioms

does make our set theory “stronger”:

Proposition 4.8. ZFC + Γ
(2)
1 -reflection ⊢ ∃κ ∈ Card κ is inaccessible.

Proof. To begin, notice that α ∈ On is a limit ordinal if Vα ⊨ Pairing+Union.
Also, α > ω if Vα ⊨ Infinity. Let

On is regular := ∀X(2) ¬∃α ∈ On
(
X(2) : α → On is unbounded

)
,

then, for a limit ordinal α, α is a regular cardinal if Vα ⊨ On is regular.

Similarly, let

On is strong limit := ∀X(2)¬∃α ∈ On
(
X(2) : P(α) → On is bijection

)
,

then, for a cardinal α, α is a strong limit if Vα ⊨ On is strong limit.

Therefore, consider the Γ
(2)
1 -formula

φ = Pairing ∧ Union ∧ Infinity ∧On is regular ∧On is strong limit

that is obviously true in V . It follows that some Vα ⊨ φ and this α ∈ On is
correspondingly an inaccessible cardinal.
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Proposition 4.9. ZFC + Γ
(2)
1 -reflection ⊢ ∃κ ∈ Card κ is Mahlo.

Proof. Let A(2) = {κ ∈ Card : κ is inaccessible}. Consider the formula

X(2) is stationary := ∀Y (2) ∃Z(2)
(
∃x x ∈ X(2) ∩ Y (2) ∨ Y (2) is bounded

∨
(
Z(2) ⊆ Y (2) is bounded ∧

⋃
Z(2) ̸∈ Y (2)

))
.

that literally asserts that X(2) intersects every sub-class of On that is closed
and unbounded. If one can prove that A(2) is stationary, it follows that some

Vα ⊨ Pairing + Union + On is regular + A(2),Vα is stationary,

i.e. the corresponding α ∈ On is a Mahlo cardinal.

Now, consider an arbitrary C(2) ⊆ On that is closed and unbounded. This
is the Γ

(2)
1 -assertion

C(2) is club := ∀X(2)
(
C(2) is unbounded

∧
(
X(2) ⊆ C(2) is bounded →

⋃
X(2) ∈ C(2)

))
.

Using the same φ as in the proof of the previous proposition, then φ ∧
C(2) is a club is true in V . It follows from the reflection principle that some

Vα ⊨ φ ∧ C(2),Vα is a club.

Here, α is an inaccessible cardinal, C(2) is closed and C(2),Vα ⊆ C(2) is un-
bounded in α. Thus α ∈ C(2) ∩ A(2) and A(2) is stationary as desired.

Therefore, if an anti-pluralist can maintain that the collection of sets sat-
isfy the axioms of Γ

(2)
n -reflection, then he is justified in claiming that the

inaccessible and Mahlo cardinals exist. This approach is explicitly taken by
Gödel in his essay [20] as he based his intuition of set theory on the repeated
applications of the operation “set of”, that is, the power set construction

Vα+1 = P(Vα)

in the iterative conception of set theory. Gödel argued that

the totality of sets obtainable by the use of the procedures of
formation of sets expressed in the other axioms forms again a
set,

implying that any (recursively enumerable) collection of axioms shall charac-
terise a proper initial segment of the Vα hierarchy. Therefore, Gödel viewed
the reflection principles as intrinsically justified through theoretical reasons
and that they support the large cardinal axioms “without arbitrariness”.

However, as Koellner proved in [26], the implications of reflection principles
in this form is very limited: through section 4-5 in the paper, he established
the following dichotomy:
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Theorem 4.10. Suppose that κ(ω) is the ω-Erdős cardinal. There exists

some δ ∈ κ(ω) such that Vδ ⊨ Γ
(2)
n -reflection for every 0 < n < ω.

On the other hand, the next stronger theory Γ
(3)
1 -reflection is inconsistent

with ZFC.

Here, the large cardinal upper bound involved arises from the study of par-
titions in [11]:

Definition 4.11. For γ ∈ On and some set x ⊆ On, let

[x]γ = {y ⊆ x : y has ordertype γ} .

Then, for ordinals α, β, γ and a cardinal δ, the ordinary partition relation
β → (α)γδ denotes the assertion that, for any function f : [β]γ → δ, there
exists some H ∈ [β]α that is homogeneous for f , i.e. f [[H]γ] ≤ 1.

Definition 4.12 (Erdős cardinals). Let α ≤ ω be an ordinal. The α-Erdős
cardinal κ(α), if exists, is the least cardinal λ such that λ→ (α)<ω

2 , that is,
λ→ (α)n2 holds for all n ∈ ω.

Now, it is proven as Theorem 78 in section 32 of Jech [23] that

Theorem 4.13. Let κ be a cardinal. If κ→ (ω)<ω
2 , then L ⊨ κ→ (ω)<ω

2 .

As an immediate corollary, the ω-Erdős cardinal κ(ω) is small: even if one is

to accept the reflection principles on Γ
(2)
n -formulae as a part of the standard

axiomatisation of set theory, he has to agree with Koellner that the new
axioms are weak. The existence of many larger cardinals, including the
measurable and Woodin cardinals that are present heavily in contemporary
research, are not guaranteed by reflection principles and Gödel’s hope of
deriving every axiom of infinity from the reflection principles is yet far from
being realised.

A more significant problem lies in Gödel’s distinction between intrinsic and
extrinsic justifications for an axiom of set theory and the fact that most
supporters of the reflection principle view it as having intrinsic evidence,
that is, on the stronger side of the distinction. As Gödel classified in [20],
intrinsic reasons arise naturally from the further analysis of the concept
of sets and appeal to the means of intuition and analogy, while extrinsic
support is measured through the “success” of an axiom, in terms of how
the adoption of the said axiom can produce fruitful theorems and simplified
proofs. As I have mentioned, reflection principles, as Gödel viewed them,
are intuitive consequences of the understanding that the iterations of the
set formation operation are unrestricted from above and hence provide an
intrinsic justification for hypotheses like certain large cardinal axioms.

However, such a Gödelian argument, if accepted, is an a priori support for
all forms of reflection principles whereas, as shown in the counterexample
Proposition 4.6, some of them are simply inconsistent with ZFC. Therefore,
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there is a risk of the fallacy of bad company and one who wishes to adopt
the argument as an intrinsic justification for new axioms of set theory must
explain why, intuitively, the inconsistent reflection principles are not justified
by his procedure. However, this can be extremely difficult as even Koellner’s
work in [26] are restricted to positive formulae in general. In section 6 of

the paper, he proved a more refined version of his dichotomy where Γ
c(m)
n -

reflection, involving formulae with n universal quantifications over closed
mth-order classes on On, is consistent given the existence of the ω-Erdős
cardinal while Γ

Γ(m)
n -reflection, where the universal quantifications are over

some mth-order pointclass in the generalised Borel hierarchy, is inconsistent
with ZFC. It is hardly imaginable that philosophical and intuitive consider-
ations can motivate such a nuanced classification in mathematics, justifying
only the consistent portion of the reflection principles, let alone covering the
more complicated formulae not analysed in Koellner’s characterisations.

Indeed, as Koellner has suspected in [26], it is worrying, given this obser-
vation, that reflection principles, especially the ones involving higher-order
variables, may not be intuitive in Gödel’s picture of the iterative concep-
tion of sets at all. This is because the Gödelian argument is essentially
asserting the absoluteness of the height of the universe of sets. However, a
higher-order language requires the identification and quantification of arbi-
trary sub-collections of this totality and it is highly problematic to attempt
to interpret it on the absolute picture. Therefore, Koellner found it hard to
conceive how intuition can motivate the acceptance of higher-order princi-
ples that are no more than formal syntactic manipulations in such a theory
of sets.

I believe that the two aforementioned attacks, concerning the theoretical
limitations and the lack of intuitive support for a higher-order reflection
principle respectively, combine to suggest that it cannot be an intrinsic ar-
gument in Gödel’s sense to appeal to reflection principles to justify the large
cardinals. It can still be extrinsically plausible as the (consistent) reflec-
tion principles are a reasonable analogy of some first-order attributes ZFC
already has and, as I have surveyed, this is a simple approach of encoding
desirable properties of set theory like the axiom of infinity or the existence
of some small large cardinals. Therefore, it may be pragmatically sound to
argue for the commitment to the existence of the ω-Erdős cardinal because,
as shown through Koellner’s work, it ensures that the set theory satisfies
a maximal amount of reflection principles currently known to be possible.
However, this is not a satisfactory intrinsic justification of the large cardinals
for an anti-pluralist any more, nor a guarantee of their consistency needed
by the pluralists, even in the very limited sense Koellner identified.

4.2 Completeness in Ω-logic

In [27], Koellner had himself proposed “a new orientation” against plural-
ism in set theory, primarily by claiming that there are strong reasons for a

27



commitment to the following axiom

Hypothesis. There exists a proper class of Woodin cardinals. This is de-
noted the axiom PCWC.

Koellner’s choice of this axiom is motivated by his belief in the “intrinsic
plausibility” of ADL(R), an axiom of determinacy on the constructive universe
of sets formed on R. Details of the implications of determinacy shall be a
central focus in the later subsection 5.1, and not covered in detail here. It is
clear here, though, that Koellner spoke of a different sense of intrinsicality
from Gödel and, with “a non-skeptical stance towards set theory” as he
expressed in the article [25], considered any desirable consequences as adding
to the compelling case for a new axiom. Explicitly, a majority of Koellner’s
reasons for the axiom of determinacy, as enumberated on pages 30–32 in [27],
are actually the potential implications of ADL(R) and its strong connections
to other hypotheses in different areas — thus extrinsic evidence, at least in
Gödel’s sense. However, the distinct argument that I wish to discuss here,
with some flavour of intrinsic intuition, is instead his suggestion that

The axiom ADL(R) appears to be “effectively complete” for the
theory of L(R),

that is, almost all statements about L(R) that are “of prior mathematical
interest” are settled once ADL(R) is assumed. Since L(R) contains all sets
that are constructible from real parameters, ADL(R) can be seen as providing
a satisfactory description for the entire theory of the reals. Koellner moved
to the stronger large cardinal axiom PCWC as an attempt to formalise this
argument:

Let V denote the standard universe of ZFC, P denote some partial ordering
in V and G ⊆ P is a generic subset. Write V [G] for the generic extension
constructed via forcing.

Definition 4.14 (Ω-satisfaction). Suppose that T is a countable theory in
the language of sets and φ is a sentence. Then T ⊨Ω φ if, for any partial
ordering P in V and ordinal α ∈ On,

if V [G]α ⊨ T then V [G]α ⊨ φ.

This concept of Ω-logic was first introduced by Woodin as a strong logic that
captures the attributes that are preserved through forcing. For example, as
noted in [1], since the generic extensions V [G] are standard models of ZFC,

ZFC ⊨Ω Con(ZFC),

even though the classical implication ZFC ⊨ Con(ZFC) is false due to Gödel’s
second incompleteness theorem. The suprising observation is that one can
expect some definable theories to be Ω-complete and PCWC is one nice
assumption that produces such a result:
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Definition 4.15 (Ω-completeness). A theory T is Ω-complete for a collection
of sentences Γ if, for each φ ∈ Γ, either T ⊨Ω φ or T ⊨Ω ¬φ.

The following claim is Theorem 10.157 from Woodin’s book [49]:

Theorem 4.16 (Woodin). Assume ZFC + PCWC. ZFC is Ω-complete for
the collection of all sentences of the form L(R) ⊨ φ.

In other words, the axiom PCWC ensures that the theory of L(R) is absolute
between different forcing extensions. Since most of the interesting indepen-
dence proofs in set theory are achieved through forcing today, it settles all
statements of the form L(R) ⊨ φ in the sense that an independence proof
generating an outer model as a counterexample, similar to that of CH, can
never be produced. Along with other evidence such as the success in various
branches of set theory, Koellner claimed to have provided strong reasons that
one should commit to the hypothesis PCWC and in turn saw the problem
of selection for axioms at a lower level on the interpretability hierarchy as
solved — the hypotheses implied by PCWC, such as ADL(R), the axiom of
projective uniformisation or other large cardinal axioms, are the “correct”
axioms for set theory.

I think that the Ω-completeness condition can be viewed as a stronger yet
analogous feature compared to the reflection principles, that is, intuitively
desirable for the absolute totality of sets. Effectively, the transitive class
V [G] obtained through forcing is seen as a larger universe V [G] ⊇ V with
some extra generic element G ̸∈ V . Therefore, in the claim above that ZFC is
Ω-complete for some collection of sentences Γ, the universe has exhausted all
“interesting” forcing conditions in the sense that adding any generic element
does not modify the interpretaton of any sentence in Γ. One can thus expect
the totality of sets as a model of some theory that is Ω-complete for as many
sentences as possible.

Then, as Koellner subsequently covered in [27], Ω-completeness, just like the
reflection principles, cannot apply to all sentences in a desirable manner.
Theorem 5.4 and 5.5 in that essay laid a dichotomy of the following form:

Theorem 4.17. Assume ZFC+PCWC. If the Strong Ω Conjecture11 holds,
then there is no recursively enumerable theory A such that ZFC + A is Ω-
complete for Σ2

3-sentences.

On the other hand, suppose that L is a large cardinal axiom and A is a
recursively enumerable theory such that

ZFC + L+ A is Ω-complete for the theory of Vλ,

11I will not go into the details of the Strong Ω Conjecture here. Essentially, it is the
assertion of both the Ω conjecture and the AD+ conjecture, two hypotheses that have
provided very useful contexts for strong results in section 10.4–10.5 in Woodin’s book
[49].
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where Vλ is some robust specifiable fragment of the universe at least as large
as Vω+2, then there exists a recursively enumerable theory B such that

ZFC + L+B is Ω-complete for the theory of Vλ,

but which differs from ZFC + L+ A on CH.

In other words, there is either no (recursively enumerable) theory that is
Ω-complete for a large enough collection of sentences, or there are multiple
that are incompatible with each other. Similar to the criticism on reflec-
tion principles, it may be argued that the intuition about absoluteness is
doubtable: while Ω-completeness is a consequential feature, it is not clear
why one’s concept of sets must possess it for a certain collection of sentences,
specifically given the observation above that the condition can never extend
fully to all statements alike.

4.3 An alternative alsoluteness in width

I have so far assessed some arguments that an anti-pluralist justification for
the large cardinal axioms arises from an intuitive analysis of the notion of
absoluteness for the totality of sets. While I argued that these perspectives
are flawed, the situation is still quite optimistic for an anti-pluralist like
Koellner: while there lacks theoretical evidence that the theory of sets, as
currently studied in mathematics, must admit certain large cardinals, one
who commits to an abstract ontology of sets still commits to a complete,
albeit non-enumerable, theory of these entities, to which the modern ax-
iomatisation ZFC is an approximation. For someone who wishes to improve
this approximation, that is, to work in theories that are “more complete”,
the large cardinal axioms on the interpretability hierarchy, up to as high as
PCWC, become a sequence of nice candidates which, considering how they
are coherent with our intuition of absoluteness as explained in the previous
sections, are potentially the best choices one can currently make.

Here, I shall reject such a view through Neil Barton’s counter-suggestion in
his recent preprint [2], where he demonstrated that an alternative intuition
on the absoluteness of the set-theoretic universe can yield an axiomatisation
incompatible with the large cardinal axioms.

At its core, Barton’s argument is similar to how a philosopher can have
two different perspectives when examining CH. One can view a universe
satisfying ¬CH as more inclusive because it asserts the existence of subsets
of R that have cardinality between ω and 2ω and are thus non-existent in a
inner model satisfying CH. Alternatively, one can claim that CH states the
existence of bijections between all ordinals below 2ω, which will be seen as
different cardinals should there lack such functions, and hence is the more
inclusive axiom of the two. Similarly, Barton proposed that the large cardinal
axioms, which are existential statements, may actually be “restrictive” in
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the sense that a universe satisfying their negations can be framed as a better
picture of an absolute totality.

The notion of absoluteness Barton examined is that of the “width” of a
universe:

Definition 4.18 (Width extensions). A width extension of a universe V is
another universe V ′ such that V is an inner model of V ′, that is, V is a
transitive sub-class of V ′ containing the ordinals OnV ′

.

One understands the width extension literally to mean that, while V ′ has the
same ordinals as V and hence the same stages in the standard cumulative
hierarchy, some stages V ′

α contain more sets than Vα. The following axiom
that, informally speaking, suggests the absolute totality of sets cannot have
interesting width extensions, was first formulated by Sy-David Friedman in
the paper [16]:

Definition 4.19. The inner model hypothesis, abbreviated as IMH, shall
denote the following claim: let φ be a first-order sentence, if φ is true in an
inner model of a width extension of V , then φ is already true in an inner
model of V .

As Barton pointed out, IMH is not really a first-order axiom but rather
a schema of axioms for the different extensions. Therefore, Barton chose
to move to the von Neumann–Bernays–Gödel set theory (NBG). The for-
mulations of NBG will be omitted here and can be found in chapter 4 of
Mendelson’s textbook [36], but it is roughly a finitely axiomatisable frag-
ment of second-order set theory realised in two-sorted logic — with distinct
variables ranging over sets and classes — and thus solves the problem of
quantifying over proper classes that serve as extensions of the universe in
IMH. In NBG, Barton considers the following version of the hypothesis:

Definition 4.20. The class-generic inner model hypothesis, abbreviated as
CIMH, refers to either of the following two equivalent claims:

• if a first-order sentence φ holds in an inner model of a tame class forcing
extension of V , then φ holds in an inner model of V ;

• if, for a first-order sentence φ, there exists a tame class forcing notion
P ⊆ V such that some p ∈ P forces “φ is true in an inner model”, then
φ holds in an inner model of V ,

where, by a first-order sentence, Barton meant a sentence containing no
variables denoting classes and, by a tame class forcing notion, Barton meant
some partial ordering P ⊆ V such that the forcing extension V [G] is also a
model of NBG.

The latter form of CIMH explicitly presents the axiom as a formal sentence
in the language of NBG.

As Theorem 8 in the 2008 paper [17], it is proven that
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Theorem 4.21. Assume ZFC and the existence of a Woodin cardinal with
an inaccessible above. Then IMH is consistent.

The following is then immediate for Barton:

Corollary 4.22. Assume ZFC and the existence of a Woodin cardinal with
an inaccessible above. Then CIMH is consistent.

Proof. In the proof of Theorem 4.21 in [17], it is explicitly constructed that
some minimal transitive model Md of ZFC containing reals of a specific
Turing degree d in a forcing extension V [G] satisfies IMH. It is easy to
verify that ⟨Md,∈,Def(Md)⟩ then becomes a model of NBG+CIMH, where
the class variables range over the definable subsets of Md.

Therefore, if one believes that large cardinal axioms such as PCWC is con-
sistent with ZFC, then CIMH is also consistent. However, CIMH is not
compatible with large cardinal axioms:

Theorem 4.23. CIMH implies that, for some real r, ZFC fails in Lα[r] for
all ordinals α. In particular, CIMH implies that there are no inaccessible
cardinals.

This is Barton’s version of Friedman’s Theorem 15 in the paper [16], where
Lα[r] denote the αth stage in the constructive universe formed from the set
r — Mitchell’s textbook chapter [37] shall be a standard reference on inner
models of such forms. Basically, Friedman worked on countable transitive
models and the construction in section 5.2 of the book [4] is invoked to
produce a class forcing extension where Lα[r] ⊭ ZFC for all ordinals α. IMH
thus naturally asserts that this is also true for the original universe V .

Therefore, a theory of sets cannot both satisfy CIMH and the large cardinal
axioms. Barton’s point is that, between the choices of CIMH and a large
cardinal axiom, CIMH is intuitively more inclusive because one can find large
cardinals in an inner model if the universe satisfies NBG+CIMH: Friedman’s
results in Theorem 2 of [17] established that

Theorem 4.24. CIMH implies that there is a (definable) inner model with
measurable cardinals of arbitrarily large Mitchell order.

The Mitchell order is covered in Definition 2.2–2.4 in [37]. As Barton wrote,
here the definitions directly imply that, for any cardinal λ ∈ Card, CIMH
interprets the theory ZFC+ there are λ-many measurable cardinals. Indeed
CIMH provides a fair interpretation of the theory, in the follow sense in
Maddy’s 1998 exposition [33]:

Definition 4.25. Let φ be a formula with one free variable. φ is a fair
interpretation of some theory T1 in T2 if and only if

• the class

φV = {x ∈ V : φ(x)}
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is a transitive model of ZFC;

• either On ⊆ φV or κ ⊆ φV for some inaccessible cardinal κ ∈ Card;

• for any sentence σ ∈ T1, T2 ⊢ φV ⊨ σ.

Informally, Maddy’s condition restricts to only accept the interpretations
that are (definable) inner models or truncated initial segments of inner mod-
els, that is, the cumulative stage Vα evaluated at some inaccessible α in an
inner model. Interpretations where one needs to introduce new sets, for ex-
ample through forcing, are ruled out. As Barton argued, the converse case
fails precisely so, where the interpretationMd obtained in the proof of Theo-
rem 4.21 is the best possible, in the sense that no fair interpretation of IMH
or CIMH can be obtained in any consistent extension of ZFC asserting the
existence of some inaccessible cardinal. The key to the observation is the
following corollary to Theorem 4.23:

Corollary 4.26. Assume ZFC+IMH. Then there are no worldly cardinals,
that is, there is no cardinal κ ∈ Card such that Vκ ⊨ ZFC.

Proof. By Theorem 4.23, for some real r, the inner model L[r] has no worldly
cardinals. It suffices to show that worldly cardinals are downwards absolute
for L[r], i.e. they are still worldly cardinals in L[r]. Here, suppose that some
Vκ ⊨ ZFC, then |Vκ| = κ. We know that r ∈ Vκ and Lκ[r] = L[r]Vκ , thus it
follows from Theorem 37 in Jech’s textbook [23] that Lκ[r] ⊨ ZFC is still a
model.

Now, as Proposition 3.8 proves, inaccessible cardinals are still inaccessible
in inner models. It is a standard fact that the least worldly cardinal has
cofinality ω and hence is strictly less than the least inaccessible cardinal,
assuming that some inaccessible cardinals exist. Thus, any inner model, or
truncations thereof, must contain a worldly cardinal and cannot be a model
of IMH. From this fact, Barton suggested that the large cardinal axioms are
more “restrictive” than his CIMH.

The intuitive picture is that, while classical arguments like Gödel’s focus on
reflection principles depend on the intuition that, in an iterative hierarchy
of sets, the power set operation is performed as many times as possible, the
width absoluteness represented by CIMH demonstrated the alternative em-
phasis that at each ordinal α ∈ On, the stage Vα should include as many sets
as possible. In this context, a universe with large cardinals is too “thin” and
needs additional elements in order to accomodate an inner model satisfying
CIMH, while conversely the axiom CIMH describes a “wide enough” universe
where one can already find inner models for large cardinal hypotheses.

Philosophical implications

I believe that Barton has presented a very strong point for an anti-pluralist to
commit to CIMH instead of large cardinal axioms, despite his universe being
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much less popular and may as well be more impractical to work with due to
the constant need to move to a context of some inner models. Therefore, I
believe that a comparison between Barton’s and the classical arguments of
an anti-pluralist reveal an inherent weakness in the mataphysical ontology
of a single universe of sets: the intuitive analysis of the “set of” operation,
which Gödel has sought hard after to provide intrinsic justifications for both
existing and new axioms of set thery, is bound to be ambiguous and even
incoherent between different perspectives.

Ultimately, one has to justify why, in establishing the current axiomatic set
theory with large cardinals, he must accept some simplistic principles but
reject other ones that follow from similar intuitions, but are incompatible
or inconsistent. Given the examples I presented in this section, I feel it is
hardly convincing to suggest that there is some theoretical reasons at work,
as compared to concluding that the considerations are made to produce an
interesting, consequential and interconnected theory of sets. In other words,
they are pragmatic arguments in a classical perspective of truth.

The difficulties are dissolved in a Carnapian viewpoint where each distinct
axiom system is considered a different language of mathematics. Carnap
himself may not feel this need to propose multiple linguistic frameworks for
mathematical entities like sets, but his constructions are definitely potent for
such a purpose, as the new evidence that I surveyed above forces one into
such a position. Given this plurality, deciding between the systems with
different logical truths, that is, theorems in a mathematical language, is an
entirely artificial matter for Carnap, where purely practical arguments are
assessed. A set theorist’s claim “assume there is a specific large cardinal”,
which I have repeated invoked when stating mathemtical results in this sec-
tion, will mean precisely that the language speaking of sets in a certain way,
such that users of the language would assent to these claims that such large
cardinals exist, is the best for describing the work I currently examine.

Admittedly, what I have presented in this section is primarily focused around
the anti-pluralist position and, instead of going for a detour of reviving the
Carnapian project, one can blatantly maintain a realist pluralist’s view and
suggest that for any potential axiom system this essay has so far considered
— that has sufficient evidence for its consistency — there is a collection
of mathematical entities in the ontology satisfying the axioms. In addition
to the fact I mentioned in subsection 3.2 that this is a literal reading of
model-theoretic claims about set theory, more and more set theorists are
indeed adopting the methodologies of model theory, due to the prevalence of
forcing and inner model theory in recent years. This is evident even in the
few mathematical results and proofs I looked at in this section.

Therefore, as has been suggested at the beginning of this essay, there have
been strong reasons to support pluralism in the philosophy of set theory.
However, I believe that it is also important to account for the practices of
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the other branches of mathematics where the intuition favours anti-pluralism
much more. A Carnapian view explains the anti-pluralist tradition while
maintaining pluralism implicitly for any potential alternative axiomatisa-
tions in set theory. The next section will provide this account from another
branch of mathematics.

5 Mathematicians’ perspectives

5.1 The projective hierarchy and determinacy

In this section, I will retract the focus to only the real numbers. On the con-
trary to the case for extremely large cardinals in set theory, there is much
more intuition for the collection12 R as the unique family of numbers serving
as all possible coordinates on a linear axis or the unique completion of a
number system of integer fractions through Dedekind cuts. However, it has
been discovered that there are natural questions about R that cannot be
answered unless one clarifies his commitment to the large cardinals. Koell-
ner’s expository [28] in the Stanford Encyclopedia of Philosophy serves as an
excellent survey on this matter. I will cite the important stipulations and
results and argue that such development refutes a pluralist position in the
philosophy of mathematics.

To begin, for a set A ⊆ R of reals, one is interested here in the following
three regularity properties representing how well-behaved A is:

Definition 5.1 (The perfect set property). A set A ⊆ R is perfect if it is
non-empty, closed and contains no isolated points.

A set A ⊆ R has the perfect set property if it is countable or contains a
perfect subset.

A set with the perfect set property is thought to be well-behaved due to the
following observation:

Proposition 5.2. If A ⊆ R is perfect, then |A| = 2ω.

Proof. Suppose |A| < 2ω, then A cannot contain any intervals. If A is also
perfect, one can find a, b ̸∈ A such that inf A < a < b < supA and it follows
that A ∩ (−∞, a] and A ∩ [b,∞) are still perfect.

Recursively define functions Fn : {0, 1}n → P(A) such that F1(0) and F1(1)
are two disjoint perfect subsets of A as constructed above and, similarly,
Fn+1(v, 0) and Fn+1(v, 1) are two disjoint perfect subsets of Fn(v) for any

12For simplicity, many set-theoretic results are instead proven on the Baire space of
functions ωω , known as the “set theorists’ reals”. However, the treatments will be es-
sentially the same for ωω and the standard set of reals. Therefore, I will always use the
notation R in this section in order to relate to philosophical intuitions.
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n ∈ ω and n-tuple v ∈ {0, 1}n. For any function f : ω → {0, 1}, it follows
that

F1(f(0)) ⊇ · · · ⊇ Fn(f(0), . . . , f(n− 1)) ⊇ · · ·

is a decreasing chain of closed sets and thus has a non-empty intersection.
Then, the function ρ : {0, 1}ω → A satisfying

ρ(f) ∈
⋂
n∈ω

Fn(f(0), . . . , f(n− 1))

is an injection, thus A cannot have cardinality less than 2ω.

Therefore, the cardinalities of the subsets of R that have the perfect set
property are either finite, ω or 2ω. This is a construction used in the Cantor–
Bendixson theorem that all uncountable closed sets of reals have the size of
the continuum and do not serve as counterexamples to CH.

The other two regularity properties arise more naturally from topology and
real analysis:

Definition 5.3 (The Baire property). A set A ⊆ R is nowhere dense if
the interior of its closure is empty; it is meager if it is a countable union of
nowhere dense sets.

A set A ⊆ R has the Baire property if there exists an open subset U ⊆ R
such that the symmetric difference

A△U = (A \ U) ∪ (U \ A)

is meager.

Definition 5.4 (Lebesgue measurability). A set A ⊆ R is Lebesgue measur-
able if there exists a Borel set13 B ⊆ R such that the symmetric difference
A△B is null.

While it is desirable for any set of reals to be well-behaved, that is, to
exhibit the aforementioned regularity properties, it is a standard result in
real analysis that, assuming ZFC, counterexamples can be found for any
of the three properties. Therefore, research has specifically focused on the
following increasing hierarchies14

Definition 5.5 (Pointclasses). A pointclass Γ denotes a definite way to
select subsets of any Polish space. Formally, a pointclass is a class of tuples
⟨A,X⟩ where X is a Polish space and A ⊆ X. When a Polish space X has

13Here, I will omit a detailed treatment of measures, Borel sets and null sets that can be
found in any introductory real analysis textbook. One way of defining Borel sets, which
is particularly related to the discussion here, will be given later in Definition 5.6 though.

14The following constructions are often called the boldface hierarchies, in contrast to an
alternative family of pointclasses named the lightface hierarchies. However, the lightface
hierarchies will not be covered or used in the discussions in this essay.
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been assumed, one says that some subset A ⊆ X lies in the pointclass Γ if
⟨A,X⟩ ∈ Γ.

For the purpose of the discussion here, one can simply view a pointclass as
a set of subsets of R (or Rn, if appropriate).

Definition 5.6 (The Borel hierarchy). Let Σ0
1 denote the pointclass of open

sets andΠ0
1 denote the pointclass of closed sets. For each ordinal 1 < α < ω1,

let Σ0
α denote the sets that are countable unions of sets in

⋃
1≤β<α Π

0
β and

Π0
α denote the sets that are countable unions of sets in

⋃
1≤β<α Σ

0
β. Let

∆0
α denote the intersection Σ0

α ∩Π0
α. The pointclasses Σ

0
α,Π

0
α,∆

0
α form the

Borel hierarchy.

The unions ⋃
1≤α<ω1

Σ0
α =

⋃
1≤α<ω1

Π0
α

are equal by definition, and form the pointclass of Borel sets.

Definition 5.7 (The projective hierarchy). Consider some subset A ⊆ Rn

where n > 1, the projection of A is the set{
v ∈ Rn−1 : ⟨v, x⟩ ∈ A for some x ∈ R

}
.

Let Σ1
0 denote the pointclass of open sets and Π1

0 denote the pointclass of
closed sets. For each number 1 ≤ n < ω, let Σ0

n denote the sets that are
projections of sets in Π1

n−1 and Π1
n denote the sets that are complements

of sets in Σ1
n. Let ∆1

n denote the intersection Σ1
n ∩ Π1

n. The pointclasses
Σ1

n,Π
1
n,∆

1
n form the projective hierarchy.

The unions ⋃
1≤n<ω

Σ1
n =

⋃
1≤n<ω

Π1
n

are equal by definition, and form the pointclass of projective sets.

Notice that, for n ≥ 1, the pointclasses on the projective hierarchy are closed
under countable unions and intersections. It follows that ∆1

1 contains all the
Borel sets. Therefore, as the numbering suggested, the projective hierarchy
is an extension of the Borel hierarchy.

The overarching collection of subsets I will consider in this section is L(R),
defined in a similar manner to Gödel’s constructive universe L, following
convention in the footnote after definition 1.6 in Mitchell’s introductory ex-
poition [37]:

Definition 5.8. Define sets Lα(R) recursively as

L0(R) = Vω+1,

Lα+1(R) = Def(Lα(R),∈),

Lλ(R) =
⋃
α∈λ

Lα(R)
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where Vω+1 is the lowest stage in the standard cumulative hierarchy that
contains R, if R is understood as the set ωω of functions on ω. Then L(R) =⋃

α∈On Lα(R).

When one refers to L(R) as a pointclass, the L(R)-subsets of Rn are exactly
the subsets of Rn that fall in L(R).

Notice that any open subset of Rn can be written as a countable union of
open discs, each of which can be described using two reals. Since a real
can easily be designed to code information for countably many reals, any
open sub is definable in ZFC using a real parameter, hence in L(R). L(R)
is subsequently closed under projection and complements, thus contains all
projective sets. It follows that L(R) is indeed containing every pointclass I
have introduced so far.

Around the beginning of the twentieth century, analysts attempted to “climb
the hierarchy” and determine the range of subsets of R that exhibit the
regularity properties. The pinnacle of the developments was the proofs in
Luzin and Suslin’s 1917 publications [31] and [46] that

Theorem 5.9. Assume ZFC. Then Σ1
1-sets have the perfect set property,

the Baire property, and are Lebesgue measurable.

It is reasonable to expect sets higher up in the projective hierarchy to dis-
play these well-behaving properties. In fact, as Solovay worked out later in
[45] with set-theoretic techniques, assuming the existence of an inaccessible
cardinal, one can force a model of ZF where every subset of R has all three
regularity properties. However, Theorem 5.9 is roughly the furthest one can
go in this direction within ZFC because, as Gödel first announced15,

Theorem 5.10. Assume ZFC + V = L, then there is a ∆1
2-set which does

not have the Baire property and is not Lebesgue measurable. There is also a
Π1

1-set which does not have the perfect set property.

Axioms of determinacy

To proceed and explain how later work on Woodin cardinals led to significant
results on the regularity properties, I will first provide the definition of a new
tool: the determinacy problem.

Definition 5.11. Let A ⊆ ωω be a subset16. Gω(A) shall denote an ideal

15Kanamori noted that explicit proofs for the results on the Baire property and the
perfect set property are not found in Gödel’s published papers, though. Details of these
constructions can be found in section 13 of Kanamori’s book [24].

16For simplicity, I will provide the formal definition of a game on ωω instead of the
standard R. The procedure can easily be moved onto R though, by looking at, for example,
the following injection ξ : ωω → [0, 1]:

ξ(f) =

∞∑
i=0

(
1− 2−f(i)

) i−1∏
j=0

2−f(j)−1.
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two-player game with perfect information. The game will last ω rounds
where, at round 2n, the first player will choose a number x(2n) ∈ ω while,
at round 2n+1, the second player will choose a number x(2n+ 1) ∈ ω. After
the ω rounds are completed, the game is won by the first player if x ∈ A
and otherwise won by the second player.

A set A ⊆ ωω is determined if, in the game Gω(A), either the first player or
the second player has a winning strategy.

According to Kanamori, Gale and Stewart first analysed games of such a form
in [18]. I will mention some introductory results that suggest determinacy
is similar to the regularity properties, that it should hold for the pointclass
at lower levels on the projective hierarchy, but may fail higher up in the
hierarchy:

Proposition 5.12. Any open or closed sets are determined.

Proof. Observe that, for any initial segment s|<2n, the first player does not
have a winning strategy here if and only if, for any s(2n) ∈ ω the first player
selects, the second player has some choice s(2n+ 1) ∈ ω such that the first
player still has no winning strategy for the initial segment s|<2n+2.

Now, let A ⊆ ωω be open and suppose that the first player does not have
a winning strategy. Then the second player has a strategy where he always
selects some s(2n+ 1) such that the first player still has no winning strategy
for the initial segment s|<2n+2. I claim that the outcome s ̸∈ A:

Otherwise, s ∈ A. Since A is open, there is some n ∈ ω that any element
in ωω with an initial segment s|<n lies in A. Then the first player has a
winning strategy after the nth round. Contradiction.

Therefore, if the first player does not have a winning strategy, then the
second player has one. The case where A is closed is analogous by switching
the two players.

Proposition 5.13. There exists a subset of ωω that is not determined.

Proof. A strategy simply consist of one function fn : {0, . . . , n− 1}ω → ω for
each n ∈ ω. Therefore, there are 2ω strategies. Let {τα : α < 2ω} enumerate
the strategies and define aα, bα ∈ ωω for each α < 2ω recursively, such that
each bα is a possible game outcome when the first player is using strategy
τα, yet bα ̸∈ {aβ : β < α}; each aα is a possible game outcome when the
second player is using strategy τα, yet aα ̸∈ {bβ : β < α}. This construction
is possible because, when one player fixed his strategy, the game still has 2ω

possible outcomes.

Now, the sets A = {aα : α < 2ω} and B = {bα : α < 2ω} are disjoint. Yet,
for any strategy chosen by the first player, it is possible that the outcome

39



lies in B; for any strategy chosen by the second player, it is possible that the
outcome lies in A. Neither has a winning strategy for the game Gω(A).

As summarised in section 27 of Kanamori’s book [24], slightly modified ver-
sions of the infinite game can be used to identify meager sets, perfect subsets
and Lebesgue measurable subsets. The precise constructions will be omit-
ted here. However, as laid out in section 6A of Moschovakis’ book [38], the
process effectively leads to the result that

Theorem 5.14. Let Γ be an adequate pointclass closed under Borel substi-
tution. Suppose that every set in Γ is determined, then every set in Γ has
the perfect set property, the Baire property, and is Lebesgue measurable17.

Here, adequacy refers to the technical conditions of containing all recursive
pointsets and being closed under recursive substitution, &, ∨, ∃≤ and ∀≤,
as Moschovakis defined in section 3E of [38]. Details aside, Σ1

n,Π
1
n,∆

1
n, the

projective sets and L(R) are all adequate pointclasses where the theorem
above applies.

Therefore, instead of dealing directly with the regularity properties, one can
ask whether the following hypotheses hold in some set theory:

Definition 5.15. The axioms of determinacy refers to axioms of the form
“all Γ-subsets of R are determined” for a pointclass Γ. This is often abbre-
viated as Γ-determinacy.

I will follow convention and write PD for the axiom schema Π1
n-determinacy

for every natural number constant n; I write ADL(R) for L(R)-determinacy.

Then, following the projective hierarchy, one can write a hierarchy of new
axioms for set theory,

Π1
1-determinacy,Π1

2-determinacy, . . . ,PD,ADL(R).

It turns out that the hierarchy of axioms of determinacy is tightly connected
to the large cardinal hierarchy. As Donald Martin proved18 in 1970 in [34],

Theorem 5.16. Assume ZFC. If there exists a measurable cardinal, then
Π1

1-determinacy holds.

It follows that, assuming the existence of a measurable cardinal, every Σ1
2-

subset of R has the perfect set property, the Baire property, and is Lebesgue
measurable. This result is later strengthen to the following in [35]:

17In the case where Γ = Π1
n, Kechris and Martin proved that the result can be improved

to show that Σ1
n+1-sets have the regularity properties. See section 27 in Kanamori’s book

[24] for a discussion of this.
18In the original paper, Martin proved that analytic sets are determined, that is, Σ1

1-
determinacy. However, a set is determined if and only if its complement is determined,
thus I state the more useful result Π1

1-determinacy here.
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Theorem 5.17. Assume ZFC. For any natural number n, if there exist
n Woodin cardinals with a measurable above them, then Π1

n+1-determinacy
holds.

If there exist ω Woodin cardinals with a measurable above them, then ADL(R)

holds.

It must be mentioned here that the hierarchy of determinacy is not only
implied by the existence of sufficiently large cardinals, but further equivalent
to the existence of such cardinals, albeit in inner models. As enumerated
in section 8 of the textbook chapter [29] by Koellner and Woodin in the
Handbook of Set Theory, there is the following sequence of results:

Theorem 5.18. Assume ZFC. The following are equivalent:

• ∆1
2-determinacy;

• for every real x ∈ R, there is an inner model M such that x ∈M and
M ⊨ there is a Woodin cardinal.

Theorem 5.19. Assume ZFC. The following are equivalent:

• PD;

• for every n < ω, there is a fine-structural, countably iterable inner
model M such that M ⊨ there are n Woodin cardinals.

Theorem 5.20. Assume ZFC. The following are equivalent:

• ADL(R);

• in L(R), for every set S of ordinals, there is an inner model M and a

countable ordinal α < ω
L(R)
1 such that S ∈M and M ⊨ α is a Woodin

cardinal.

Therefore, it has to be admitted, based on the aforementioned mathematical
facts, that the regularity behaviours of the subsets of reals, determinacy and
the consistency of large cardinal axioms are heavily intertwined matters. By
accepting or rejecting different large cardinal axioms, it is possible that the
ontology of sets one commits to contains significantly different collections of
“subsets of reals”.

While this may not be a problem for some pluralists, such as a model theorist
who is used to working with even different collection of “reals” satisfying
the first-order theory of real closed fields, like the hyperreal and surreal
numbers, it is still a failure in a philosophy of mathematics if it is incapable
of explaining the näıve notion of reals in daily life and in the work of many
more mathematicians who are not bothered by these properties linked to the
large cardinals.

In other words, in the previous sections, a pluralist is able dismiss the weak
philosophical case for anti-pluralism regarding the large cardinals, primarily
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due to the fact that these entities seem very distant from our intuitive con-
ception of sets and it is doubtful whether, from such intuition, one can form
a definite picture about any large cardinals. However, when the discussion
has been brought to the reals, there is suddenly much stronger support for
an anti-pluralist viewpoint because it feels much easier to have some intu-
ition about the “totality of sets of reals” and every element of this totality
must either possess the regularity properties or not possess them, in a pre-
determined way, no matter whether they are Borel, projective or neither.
It is more difficult to make sense of the pluralist’s claim that there exist
distinct collections of abstract entities, each of which fits the concept “the
totality of sets” equally, when the distinction is applied to the reals alike.

5.2 Friedman’s counting propositions

Admittedly, it can be argued that, similar to how the näıve conception of
sets has been blatantly paradoxical, one’s intuition about the reals may
not be reliable as well. Such an attack can be framed, for example, in an
intuitionist flavour, based on the limited power of the mind to produce a
constructive understanding of mathematical entities. Since the concerns of
the regularity properties are entirely about the non-enumerable collections
of reals, humans’ intuition about them can be incorrect and it is possible
that there is, in fact, no unique totality of such sets.

However, in the paper Finite functions and the necessary use of large cardi-
nals ([14]), Harvey Friedman has proved some more surprising independence
results, in his project to search for “concrete mathematical incompleteness”
in contemporary formal systems. I will explain his results:

For the definitions below, when y ∈ ωk is a k-tuple of numbers, the norm

|y| = max
1≤i≤k

yi

is read as the supremum norm.

Definition 5.21. Let k, r be positive numbers and B ⊆ A ⊆ ωk. For some
function f : A → ωr and y ∈ ωr, y is a regressive value of f on B if there
exists some x ∈ B such that y = f(x) and |y| < min1≤i≤k xi.

Definition 5.22. Let X be a set. A function assignment U assigns a unique
function U(A) : A→ A to each finite subset A ⊆ X.

Let U be a function assignment on Nk, where N ⊆ ω. U is #-decreasing if,
for any finite A ⊆ Nk and x ∈ Nk, either U(A) = U(A ∪ {x})|A or there
exists some y ∈ A such that |y| > |x| and

|U(A)(y)| > |U(A ∪ {x})(y)| .

Then, the following statement is labelled by Friedman as Proposition B :
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Hypothesis. Let n ≫ k, p > 0 and U be a #-decreasing function assign-
ment for {0, . . . , n− 1}k. Then some U(A) has ≤ kk regressive values on
some Ek ⊆ A, where |E| = p.

By n ≫ k, Friedman meant that, for any positive number k, there exists
m > k such that, for any n > m, the subsequent claim holds for the given
n, k. Friedman also listed similar hypotheses A, C and D but, as he later
showed, these propositions indeed have roughly the same strength, compared
to the large cardinal hierarchy. Therefore, I will only use Propsition B as an
example here.

Using his complicated stipulations, Friedman was able to prove that his
propositions are independent of ZFC. More precisely, he proved that

Theorem 5.23. Assume that, for any k ∈ ω, there exists a k-subtle cardinal.
Then Proposition B holds.

Theorem 5.24. Assume Proposition B. Then there is a model of ZFC that
interprets the set of axioms

{there exists a n-subtle cardinal : n is a natural number constant} .

Here, the large cardinal conditions involved were first defined by Baumgart-
ner in [3]:

Definition 5.25 (k-subtle cardinals). Let k be a positive integer. For some
setX, let Sk(X) denote the set of subsets ofX with size k. For some cardinal
λ ∈ Card, a function f : Sk(λ) → P(λ) is regressive if for all A ∈ Sk(λ),
either f(A) < min(A) or min(A) = 0. A subset E ⊆ λ is f -homogeneous if,
for any C,D ∈ Sk(E),

f(C) ∩min(C ∪D) = f(D) ∩min(C ∪D).

Then, a cardinal κ ∈ Card is k-subtle if it is infinite and, for any club
C ⊆ κ and regressive f : Sk(κ) → P(κ), there exists an f -homogeneous
A ∈ Sk+1(C).

Proofs for many elementary results about k-subtle cardinals can be found
explicitly in section 1 of Friedman’s paper [15]. Effectively, the k-subtle
cardinals will insert into the hierarchy of large cardinals I have introduced
so far in the following manner:

. . . ,Mahlo, 1-subtle, . . . , k-subtle, . . . , κ(ω), . . . ,measurable, . . .

They are small large cardinals below the ω-Erdős cardinal.

While Friedman’s hypothesis does not involve large cardinals as large as the
ones used to resolve the determinacy problems, his result is notable due to
fact that the entire Proposition B only concerns subsets and multivariate
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functions on ω. Therefore, these statements, as he has hoped19, suggest
compelling involvement of large cardinals in infinitary discrete mathematics,
one of the most concrete branches of mathematics.

It must then be admitted that, if one takes a pluralist approach on the ex-
tensions of ZFC that proves and rejects the consistency of k-subtle cardinals
respectively — models of the former should exist due to the overwhelming
studies that support the consistency of large cardinals, while models of the
latter are guaranteed by Gödel’s second incompleteness theorem — then, ac-
cording to Friedman’s research, the two theories generate distinct senses for
the concept of multivariate integer-valued functions and proves incompati-
ble properties for them. This is simply contradictory to the commonsensical
understanding of numbers and functions on numbers.

Therefore, I argue that the observations of independence in various areas of
mathematics constitute a strong attack on a pluralist philosophy of math-
ematics. While accepting a multitude of set-theoretic universes can sweep
away disputes surrounding the choice between axiomatisations, losing the
ability to pinpoint the unique collection of all natural numbers, all functions
between sets of integers or all subsets of reals in one’s ontology of abstract
entities seems too high a price to pay.

I shall suggest that, a Carnapian viewpoint is still implicitly plural and serves
as a replacement for a full-blown anti-pluralism to respond to this attack from
the mainstream branches of mathematics. The Carnapian philosophy pro-
vides an internal environment where, after adopting a fixed formal system
as the underlying language, one is free to assert an anti-pluralist claim with-
out worries of overlooking other models that potentially exist. For example,
in an analysis textbook where the context is specified to be a language of
ZFC plus a fixed identification of the real numbers as sets, perhaps through
Dedekind cuts, then the author is free to refer to “the reals” or “the subsets
of R”, fully justified to ignore the fact that there is an indeterminate choice
between including only projective sets that have regularity properties and
admitting ones that do not.

Meanwhile, the theory of linguistic frameworks is able to respond to the dis-
cussions in set theory that I have examined in the previous section as well.
While the specific language of ZFC is used in the majority of mathemati-
cal discussions, one can still acknowledge the desirable practical features of
large cardinal axioms and assume them whenever necessary by maintain-
ing an implicit pluralist stance and switching between different linguistic
frameworks.

Therefore, I believe that a Carnapian philosophy acts as a middle-ground
between pluralism and anti-pluralism regarding the metaphysical disputes
on abstract entities. In the case of set theory, it is a ready option to dissolve
the prominent worries of both parties.

19See section 5 of Friedman’s article in [13].
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6 Reflections on the modern philosophy of

mathematics

6.1 Naturalism

In the end, I will look at some positions of well-known philosophers of math-
ematics in recent years and their attempts at responding to some of the
problems I have mentioned in the thesis. I will especially focus on Penelope
Maddy’s naturalist philosophy of mathematics and argue that the Carnapian
viewpoint is, in addition, a natural interpretation of contemporary mathe-
matical practices.

Now, Maddy’s naturalism is an analogy in mathematics of a Quinean phi-
losophy. Where Quine enforced that philosophical problems shall be tackled
and justified through the same standards and practices as the natural sci-
ences, Maddy took it one step further and asserted in her book Naturalism
in Mathematics ([32]) that “a successful enterprise, be it science or mathe-
matics, should be understood and evaluated on its own terms”. Specifically,
for mathematics, Maddy maintained that

the idea, then, is that set theoretic practice in particular, and
mathematical practice in general, are not in need of justification
from philosophical quarters. Justification, on this view, comes
from within, couched in simple terms of what means are most
effective for meeting the relevant mathematical ends.

I will use the panel discussion [13], where the quote above came from, as a
primary background of my comments here. I believe that it was through the
exchange of the four participants on the panel that a naturalist position on
mathematics was molded into how it should be.

Maddy herself is a proponent of the large cardinal axioms and believes that
the inclusion of these axioms helps achieve some set-theoretic goals. Yet
Maddy has not made clear in her presentation what these goals are or why
they are evident in the mathematical community other than acknowledging
that set theory aspires to lay a foundation for all other areas of mathe-
matics. Thus, in response to her claim that commiting to the existence of
many Woodin cardinals provided a solution that “set theorists had sought
for decades” — through the results I have surveyed in subsection 5.1 — Fe-
ferman asked why “the ‘good’ properties of Borel and analytic sets should
generalize to all projective sets, given that they don’t hold for all sets?” It
is indeed unclear why one should view the affirmation of some propositions
already shown to be independent of the existing theory as a major goal of a
branch of mathematics.

It can be argued that Steel’s reference to Maddy’s own maxim “maximize”
provides a better account of a set theorist’s acceptance of the large cardinals.
In her essay [33], Maddy characterised this goal as that
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the set theoretic arena in which mathematics is to be modelled
should be as generous as possible; the set theoretic axioms from
which mathematical theorems are to be proved should be as pow-
erful and fruitful as possible.

The large cardinal axioms are undoubtedly successful candidates to fulfill
this purpose. As I have demonstrated in subsection 3.2, one can obtain pro-
gressively stronger theories in terms of interpretability by incorporating large
cardinal axioms higher and higher on the hierarchy. Meanwhile, strong as-
sumptions in other areas of mathematics, such as the axioms of determinacy
I examined in subsection 5.1, are often also provable or interpretable in a
theory with sufficiently large cardinals, making such theories a very powerful
context for all kinds of mathematical discussions.

In fact, as Maddy has been explicit in her article in [13], unlike Gödel’s clas-
sical emphasis on intrinsic evidences and justification, a naturalist welcomes
extrinsic reasons that connect mathematical axioms to the underlying pur-
poses of a subject. Therefore, the evidence Koellner has provided in recent
years for the axioms of Woodin cardinals and determinacy of L(R), for ex-
ample in section 4 of his expository [27], counts as solid support for these
strong hypotheses in Maddy’s framework. Koellner’s focus is essentially on
the tight connections between the existence of Woodin cardinals and other
natural claims in various branches of mathematics and this fits nicely into
the picture of a mutually explanatory body of mathematical theorems, com-
pletely analogous to Quine’s ideal of a coherent web of knowledge across the
natural sciences.

However, I believe that there is one crucial mistake in Maddy’s version of
naturalism. As Friedman pointed out in the panel, the viewpoint of a math-
ematician may be extremely different from that of a set theorist. Mathe-
matics has developed for a few thousands of years before utilising set theory
as a universal foundation and has its own practice and foci. Therefore, it is
the recognisation by the general mathematician community that established
ZFC as the “current golden standard of rigor”, instead of solely through
certain set-theoretic properties such as interpretability.

To be more precise, I believe that Maddy has misinterpreted the desirable
“mathematical ends” as the resolution of open questions, through any means,
in a well-behaved direction and the foundational goal of set theory as to
simply provide a universe in which any existing mathematical result can be
interpreted and proven. However, different branches of mathematics have
their own “code of conduct” as in what to accept as a proof even before
the spread of the set-theoretic techniques and it is key for a new foundation
to be conservative over this pre-existing system. For example, the proof of
PD from the existence of infinitely many Woodin cardinals, and any other
demonstration of mathematical results from large cardinal axioms I have
mentioned in section 5, will, in general, not be received in the same way
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as Luzin and Suslin’s 1917 proof of the weaker results using purely classical
assumptions in the mathematical community. It is not a simple matter of
pragmatic attraction to modify this standard practice of modern mathemat-
ics.

Therefore, while Maddy and other proponents of large cardinals can suggest
that such a theory is to be studied in set-theoretic research due to the extrin-
sic plausibility of the axioms, it is still a long way before they can be accepted
as “axioms of mathematics”. A plausible naturalism in mathematics, as I
believe, must acknowledge this fact that to reach the “relevant mathematical
ends” is firstly to remain loyal to a presumed, rigorous practice, and then to
seek the best results that can be established within the constraints.

Hence, it is apparent that one should recognise two distinctive contexts for
a mathematical statement: one is to lay out the presumed practice, which
includes, in a formal context, the rules of references and the axioms; the
other one is for the establishment of the results, that is, the proofs. This
corresponds precisely to the two ways one may speak of a Carnapian linguis-
tic framework: either externally of the attributes and pragmaticality of the
framework, or internally of the logical consequences of the framework.

I would thus argue that the Carnapian philosophy is a natural candidate
for the philosophy of mathematics. It allows for a free choice of the lin-
guistic framework in precisely the way one would see the choice between
axiomatisations as entirely pragmatic and artificial and justifies exactly the
mathematical statements — including existential claims — that most mod-
ern mathematicians would view as justified, through the availability of a
proof.

6.2 Consistency versus existence

A Carnapian perspective of mathematics is an implicit form of pluralism in
the way that all axioms are structural axioms in Feferman’s sense in [12],
that is, “[they] are simply definitions of kinds of structures which have been
recognized to recur in various mathematical situations”. While Feferman
identified the debate on the axioms of set theory as concerning the founda-
tional axioms, which should be laws, axioms and constructions that “under-
lie all mathematical concepts”, a Carnapian philosopher recognises none. In
other words, there is not one unique language in which all other branches
of mathematics are interpreted. Rather, it is a purely coincidental fact —
a pragmatic choice by mathematicians, indeed — that number theory, real
analysis, et cetera, are treated as sub-structures in ZFC and utilise the same
axioms from ZFC for the sets of numbers or the sets of reals.

However, it is still possible to rescue Maddy’s naturalism from an anti-
pluralist direction, by extending ZFC using axioms of form

Con(ZFC + some large cardinal axiom)
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instead of the large cardinal axioms themselves. This is a sensible concession
from the overambitious commitment to the large cardinal axioms since, as Fe-
ferman and Friedman both noticed in [13], many of the connections between
various areas of mathematics and the large cardinal axioms are actually es-
tablished on the consistency claims, instead of existential ones. The axioms
will still fulfill Maddy and Steel’s goal of maximising the interpretability of
the theory, while providing a position one can argue more convincingly for:
as I remarked in subsection 3.2, regarding many large cardinal axioms that
has been heavily studied, such as the Woodin cardinals, the case for their
consistency has been almost as strong as that for the consistency of ZFC.
Therefore, if one is devoted to the consistency of some large cardinal axioms,
it is reasonable that the correct foundational theory reflects this.

This extension of ZFC is still non-conservative over the theory of some
branches of mathematics formalised in ZFC. This is evident through The-
orem 5.24 in this thesis, a result by Friedman that his Proposition B is
equivalent to the consistency of several large cardinal axioms. However, it
is much more reasonable to accept Proposition B as a theorem of standard
mathematics here because the evidence for the consistency of the large cardi-
nal axioms supports that the consistency statement is an axiom one may use
in classical reasoning, in exactly the same nature how one’s intuition backs
the acceptance of the axioms of ZFC. It can be suggested that we just failed
to notice the naturalness of the new hypotheses and hence the possibility of
proving Proposition B before they are eventually introduced.

However, the success of such a procedure is limited. Namely, one may no-
tice that Theorem 5.18 to Theorem 5.20 of Woodin’s results on the axioms
of determinacy take a similar form to Theorem 5.24 and do not require
that Woodin cardinals actually exist. Yet it is doubtful whether one’s in-
tuition about the consistency of certain axioms can extend so far to the
existence of inner models with specific complex properties. Hence, it is
likely that, through the aforementioned means, one can at best justify the
axiom Con(ZFC + PCWC) and invoke the completeness theorem for first-
order logic to work in a different model where the Woodin cardinals exist.

Therefore, I wish to conclude that, in most cases where large cardinal axioms
are needed, a foundational theory that can be justified naturally through
mathematical practices cannot actually free one from the practice of begin-
ning his theorem with “assume some φ-cardinals exist” and thus displays no
significant advantage over a pluralist theory based on the Carnapian view-
point.

I believe that this section thus established a Carnapian philosophy as a natu-
ral description of the contemporary mathematical practice by allowing both
the set theorists to follow their enthusiasm in the multitude of strong theories
for the universe and the other mathematicians to retain their classical, de-
termined notion of proofs. I shall end here with a Wittgensteinian summary
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Maddy wrote for her naturalist project in [33]:

the best confirmation of success would be for the mathematician
to shrug and say, ‘Of course, everybody knows that.’

and its striking correlation to how Carnap ended the essay ESO, reiterating
his principle of tolerance:

let us grant to those who work in any special field of investigation
the freedom to use any form of expression which seems useful to
them.

7 Conclusion

In conclusion, this thesis has examined the plausibility of a Carnapian posi-
tion in the philosophy of mathematics, in the context of the various problems
surrounding the large cardinal axioms in Zermelo–Fraenkel set theory with
the axiom of choice. I have argued that the perspective is a sound one across
multiple scenarios where different other attempts reveal their weaknesses.

Section 2 of this thesis was dedicated to the revival of Carnap’s project
for the specific purpose of analysing mathematical practices, and defended
the theory against Quine’s and Gödel’s criticisms. In section 3, I rendered
the large cardinal axioms on a hierarchy of interpretability and argued that
anti-pluralists are faced with a heavy task of justifying their ontology of
sets. Their arguments are subsequently dismantled in section 4 to demon-
strate the disadvantage of such a position in the philosophy of set theory.
I then presented counter-arguments in section 5 involving the implications
of large cardinals in more common areas of mathematics, which undermined
classical pluralism in favour of the Carnapian position. Finally, Maddy’s
naturalism in mathematics is assessed in section 6, where I argued that Car-
nap’s philosophy constitutes a more natural perspective on the contemporary
mathematical practices.

Therefore, I believe that my arguments establish a Carnapian philosophy of
mathematics as a reasonable position to maintain and a balanced resolution
between the quarreling pluralists and anti-pluralists. I hope that this anal-
ysis in set theory witnesses the fact that mathematics has evolved from an
ancient, Platonist science of the numbers and geometries to a modern disci-
pline of the study of any precise patterns: Carnap’s internal, formal theory
of logical consequences represents the mathematical rigour in the studies,
while his loose criteria for the frameworks echo the mathematicians’ delving
into independence, interpretability and many other more intricated areas of
meta-logic in the past century. I believe it is this combination of caution
and tolerance that has driven many new discoveries in mathematics and will
undoubtedly motivate more.
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