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Abstract

A. R. D. Mathias mentioned in a paper that the axioms of Ag-separation and
IT;-foundation suffice to show that two (set-theoretic) characterisations of finite-
ness, namely “carrying a double well-ordering” and “in bijection with a natural
number”, coincide. However, it is recently brought to the author’s attention that
Mathias’ proof of the claim is flawed. In this exposition I shall argue that the
two aforementioned notions are in fact not equivalent under these axioms, by
constructing a counterexample using model-theoretic techniques.

In Mathias’ paper [3], one of the systems he considered is ReS, defined to consist of
the axioms of extensionality, empty set, pairing, difference, union, Ag-separation and
I1;-foundation. Proposition 2.1 in [3] asserts that

Claim 1 (ReS). If a set X carries a double well-ordering, then it is in bijection with
some member of w.

The key process in the incorrect proof Mathias provided involves some II; class
Z ={x e X :—-3f fis an attempt at x} C X,

where f is an attempt at x if it bijects the initial segment ending at x into an initial
segment of ordinals. Mathias argued that if Z is non-empty, it shall have a <x-minimal
element where <y is a double well-ordering on X, leading to a contradiction. However,
II;-foundation only ensures that Z has an €-minimal element and in order to get a
<x-minimal element using the fact that <y is a well-ordering, one needs to invoke
II;-separation and justify that Z is a set — which is beyond the capabilities of ReS.

In this exposition, we shall show that is in fact false. Namely, our coun-
terexample uses the concept that is commonly known as rudimentary functions. The
properties of these V™ — V functions are thoroughly studied in [1], so we will follow
the naming convention there and call them basic functions instead. We shall define

H={(n):necw}
where «(z) = {z} and

R ={{("(n),"(m)) : n even, m odd}
U {{™(
U
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n),.™(m)) : n,m even, n < m}

n),™(m)) : n,m odd, n > m}




so that R is a strict linear order relation on H.

Let Be(z) denote the basic closure of z, i.e.
Be(z) = {B(y) : 5 € Te(x)", B: V" — V basic function},

where Tc(z) denotes the transitive closure of . We let & = Be({w,H,R}). Then as
an immediate corollary of Theorem 1.4.7 and 1.4.8 in [1], we have
Proposition 2. U/ F ReS.

Since U obviously cannot contain a bijection between H and any member of w, it
suffices now to show

UFE (H;R) is a double well-ordering.

Observe that (H;R) actually has order type w# w*, where w* denotes the reverse
ordering of w. Thus, if A € U, A C H is a set without an R-maximum, then
{n €w:"(n) € A} must be an unbounded set of even numbers. Hence

{*"2n):new}={zeH:TyeAlz,y) eR} €U

by Ag-separation. A similar argument holds for the sets without R-minima. Therefore,
it suffices to show that
Theorem 3. {/*"(2n) :ncw} ¢ U.

This shall be the main goal of this exposition. We first show that
Lemma 4. Suppose that A € U and A C H, then there exists a Ag formula ¢ such
that

A={z et : p(x,H,R)}.

Proof. Observe that sets in Tc({w, H,R}) \ {w, H, R} are all hereditarily finite. Thus,
there must exist a tuple of hereditarily finite sets Z € HF" ™ and a basic function
B : V"™ — V such that A = B(Z,w,H,R). Let I : V? — {0,1} denote the basic

function
1 ifx ey,
I(z,y) =
(z,9) {0 otherwise,

then (z,y) — I(z,B(y)) € {0,1} must be the characteristic function of some Ay
relation ¢ satisfying

A={zeH :¢Y(z,Z,w,H,R)},
by Theorem 1.3.6 in [1].

To eliminate the parameters Z and w, we use Theorem 2.1.2 in [1] that the constant
function ¢, :  +— w is substitutable, i.e. for any Ag relation p(z,7), there exists a Ay
relation @(z,7) such that

Vm,@(g@(cw(:v),@ A @(x7y)) :

It is trivial that the constant functions ¢, : x — z, where z € HF, are also substitutable
(because they are basic), thus we can find a Ag relation ¢ such that

v%@/la Y2 (w(xa C?(‘r)?cw(x)aylv y2> e Sp(wv Y1, y?)) .
It follows that A ={x € H : ¢p(z,H,R)}. O



Now, consider the transitive set M = {¢™(n) : n,m € w}. We shall work in a language
L* = {€, H, R} where H is a unary relation symbol and R is a binary relation symbol.
We show that
Lemma 5. Suppose that A = {z € H : p(x,H,R)} for a Ag formula ¢ (in the lan-
guage of set theory Lset = {€}), then there exists a formula ©* in the language L* such
that

A={zeH: (M;e,H,R) F ¢ (x)},

where every unbounded quantifier in ©* is of the formVx (Hx — ---) or Jx (Hx A ---).

Proof. In the language Lgo, we introduce new abbreviations

VaRy n(z,y) = VYpeRVz,yecH(p= (zy) —nlzy),
JzRy n(z,y) = IpeRIx,yecH = (z,y) An(z,y)).

Consider rewriting rules

VpeRnlp) = VaRyn',
peRnlp) = FxRyn,
pPER = FzRyp=(z,y),
where n* is a Ay relation equivalent to n({x,y)) but does not mention the pairing
function explicitly, which must exist by Gandy’s theory of substitutable functions in

[1]. Likewise, p = (z,y) stands as an abbreviation for the defining formula of ordered
pairs instead of mentioning the pairing function explicitly.

By iterating this rewriting process on ¢(z,H,R), we can obtain a formula ¥ (z, H,R)
such that every occurrence of R in 1 is either to the left of the relation symbol €, or
part of the bounded quantifier in one of the two abbreviations we just defined. It is
easy to show by induction that p(z, H,R) <> ¥(z, H,R).

Finally, we obtain ¢*(z) from ¢ (x,H,R) by replacing
Vee Hnlx) = Ve(Hr—n(x)),

JreHn(z) = Ix(HzAn(z)),

VeRy n(z,y) = Va,y(HxANHyA Rzy — n(z,y)),

xRy n(z,y) = Jz,y(Hx AHyA Rxy An(x,y)),
Hex = L

)

Rezxz = L.
It is again easy to show by induction that
for any © € M by observing that any such x is hereditarily finite, so H, R & x. O
We will simplify the theory of definable subsets of M by proving a quantifier elimina-

tion result. Let £f = £* U {0, 5,4} be an expanded language with an extra constant
symbol and two unary function symbols. Correspondingly, set

2220+ 2) if 2 = 2" (2n),
S(z) =<2 2n+1) ifz =23 2n+3),

%) otherwise.



So that S is the successor function for the linear order R. Let & = (M; €, H, R, D, S, 1)
denote our standard structure in the language £. Observe that we have

Lemma 6. The first-order theory T = Th(&) eliminates “unbounded quantifiers re-
stricted to the domain H”, that is, for any formula @ where every unbounded quantifier
in @ is of the form Ve (Hx — ---) or 3z (Hx A ---), there exists a formula ¥ without
unbounded quantifiers, such that

T EVz (p(7) © ¥(@)).

Proof. Let v be a formula in LT without unbounded quantifiers. It suffices to find
another formula v without unbounded quantifiers such that

T vz (3y (Hy Av(@,y) « 0(@))

To this end, we can imitate the classical model-theoretic trick in Theorem 3.1.4 in [2].
Denote n(z) = Jy (Hy A (T, y)), and let

I' = {6(a) : 0 has no unbounded quantifiers, T'F vz (n(z) — 0(7))},

then by compactness it suffices to show that T UT E n(a). Suppose otherwise, let 9t
be a model of T UT U {-n(a)}, and let Tyy be the Ag theory of M in the language LT
with additional constant symbols @, then T"U Ty U {n(@)} must be satisfiable. Define
N to be a model of T"U Toy U {n(a)}, and we shall derive a contradiction by showing
that 91 E n(a) implies M E n(a).

We will prove this by analysing the structure of models of T'. Firstly, 1" asserts that all
non-singleton sets (and 1 = {@}) together forms a model of Th({w; <)), that is, a linear
order of order type w # Z - ¢ for some arbitrary linear order ¢ (where the (-) operator
denotes the Cartesian product with inverse lexicographic order). “Above” each element
x in this class, there must lie a separate sequence of singletons {v"(x)}, cn+. There
can be additional singleton elements, but they must lie in separate sequences of the
form --- € x_ 9 € x_1 € g € 1 € ---. Finally, the interpretation of H must
contain precisely the elements {¢"(n) : n € w} together with at most one element from
each infinite sequence of singletons above, and the relation symbol R must arrange
the elements in the interpretation of H into a model of Th({w#w*;<)), that is, a
linear order of order type w# Z - ¢’ # w* for some arbitrary linear order ¢, where
the elements {t"(n) : n € w} occupy the two ends in the same order as given in the
standard structure (M; e, H,R) and the singleton elements in the infinite sequences
occupy the Z - ¢ part in the middle.

Let A™ C 9 be the smallest transitive substructure containing @ and also closed
under (Sim)fl wherever the inverse is defined, that is, A™ contains any = € 9t such
that for some o and j, k € Z, JJ(z) is of finite distance from (¥ (a]") in either of the
orderings € or R™. Since Tyy contains all atomic formulae that constrain the relative
position of pairs a;, a;, there is an obvious isomorphism between A™ and the similarly
defined substructure A™ C M. Tt follows that if M F (@, b) for some b € H* N AM

then there must be a corresponding ¥’ € H™ N A™ such that M F (@, v').

Suppose otherwise, i.e. M F (@, b) only for some b € H™\ A®. By compactness, we
can then construct a model © D A™ of T such that O F Hb A (@, b) for some b € O,
yet there is a ¢ € O satisfying ¢ € H? \ A", Rex « Rbx for any z € H® N A™ and



—1(@, ¢) — because given any finite subset of the constraints for ¢ above, we can find
some c* € H?'N A™ satisfying them, for which ¢ E —(@, ¢*) holds. By our analysis of
models of T" above, we can easily find an automorphism of O that swaps b and ¢ while
preserving A”. Consequently,

O FY(a,b) < ¥(a,c).

This is a contradiction. Therefore, we must always be in the case above where I =
Jy (Hy ANY(a,y)), and the lemma is proven. O

Lastly, we need to show that
Lemma 7. Let ¢(z) be a formula in LY with no unbounded quantifiers and exactly
one free variable. Then the set

{reH :GF px)}
1s either finite or cofinite in H.

Proof. Given a formula ¢(Z,7), any @ € M™, any k € Z™ and any 5 € w™, we show
that there exists a large enough N € w such that for any n > N,

Gk go(v(n,%j),d) < go(v(N,E,E),E),
by induction on the complexity of ¢, where

2Ptk (4 9gip(n)) if nis even,

v(n, ki, s;) =
e {L”_2Sm(")+k" (n —2s;p(n)) if nis odd

(with v(n, k;, s;) = @ if any computation yields a negative result) and the complexity
includes both the number of connectives and the number of function symbols in the
formula.

In the base case, observe that any a € M is finite, so we can always ensure
v(n, ki, s;) €a and a ¢ v(n,k;,s;)

for some fixed k;,s; when n is large enough; also observe that for any z € H, the
sets {z € H:(x,z) € R} and {x € H : (z,x2) € R} are both either finite or cofinite.
The cases for other atomic formulae are similar or trivial. Especially, observe that
whether two sets v(n, k;, s;) and v(n,kj, s;) are related by the relations € or R are
both determined by the parameters s;,s;, k;, k; and not affected by the parity of n
when n is large enough.

In the inductive case, when ¢ contains a function symbol whose parameter is simply
x; or y;, notice that we can simply replace the function term by the result of its
invocation and apply the inductive hypothesis. When the parameter is z;, this is done
by inserting a new variable and use either indices k= <E, kz> ,8 = (5,s; + 1) for the
function symbol S or ¥ = (k,ki+1),5 = (35,s;) for the function symbol i.

When ¢ is of the form Vz € z; ¥(Z, z,7) or 3z € x; ¥(T, 2,7), note that v(n, k;, s;) =
{v(n,k; —1,s;)} when n is large enough, so the desired conclusion follows from the
inductive hypothesis on the formula v and indices k= <E, ki — 1> , 8 = (5,s;). The



rest of the cases only involve finite unions, intersections and complements due to the
fact that every a € M is finite.

Thus, for the formula ¢(x) in the lemma, we know by induction that, for some large
enough N € w,
S E ¢(i"(n)) < o(WM(N)),

for any n > N. The lemma follows immediately. O

The lemmata [ through [7] imply that for any set A € U such that A C H, A
must be either finite or cofinite in H. Therefore holds, that is, the set
{t**(2n) : n € w}, which is neither finite nor cofinite in #, cannot be in &. The model
U thinks that H carries a double well-ordering R, but is not in bijection with any
member of w. This contradicts
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