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CZF Realisability Exponentiation V = L

Constructive Zermelo–Fraenkel set theory CZF

Extensionality + Pairing + Union + Strong Infinity + Set Induction

+ ∆0-Separation + Strong Collection + Subset Collection

Set Induction: ∀x (∀y ∈ x φ(y) → φ(x)) → ∀x φ(x)

Strong Collection: ∀x ∈ a ∃y φ(x , y) →
∃b (∀x ∈ a ∃y ∈ b φ(x , y) ∧ ∀y ∈ b ∃x ∈ a φ(x , y))

Subset Collection: ∃c ∀u (∀x ∈ a ∃y ∈ b φ(x , y , u) →
∃d ∈ c (∀x ∈ a ∃y ∈ d φ(x , y , u) ∧ ∀y ∈ d ∃x ∈ a φ(x , y , u)))

We denote CZF(P) = CZF+ Powerset
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CZF Realisability Exponentiation V = L

Constructive Zermelo–Fraenkel set theory CZF

Extensionality + Pairing + Union + Strong Infinity + Set Induction

+ ∆0-Separation + Strong Collection + Subset Collection

Subset Collection: ∃c ∀u (∀x ∈ a ∃y ∈ b φ(x , y , u) →
∃d ∈ c (∀x ∈ a ∃y ∈ d φ(x , y , u) ∧ ∀y ∈ d ∃x ∈ a φ(x , y , u)))

Exponentiation:
∀x ∀y the set y x of all functions from x to y exists

Proposition

Powerset ⇒ Subset Collection ⇒ Exponentiation.

We denote CZF(P) = CZF+ Powerset
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CZF Realisability Exponentiation V = L

Ordinals and L

An ordinal is a transitive set of transitive sets. For ordinals α, we
construct the usual hierarchy

Lα =
⋃
β∈α

def(Lβ)

where def(Lβ) is the collection of all first-order definable sets in
⟨Lβ;∈⟩ with parameters. Then L =

⋃
α∈Ord Lα.

The intuitionistic L was first treated by Robert Lubarsky [5]. Other
ways to define L are still intuitionistically equivalent, such as
iterating finitely many fundamental operations, as verified recently
by Matthews & Rathjen [6].
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CZF Realisability Exponentiation V = L

Intuitionistic ordinals (and L)

Proposition (ZF)

If α ⊆ β are ordinals, then either α = β or α ∈ β. Especially, it
follows that Ord is linearly ordered.

The proof of this starts with “either β ⊆ α, or there exists γ ∈ β
such that γ ̸∈ α. . . ”, which is not intuitionistically valid!

Likewise,
the following corollary only works in classical logic:

Corollary (ZF)

If α is an ordinal, then α = Lα ∩Ord ∈ Lα+1.

It remains open whether any intuitionistic set theories suffice to
prove Ord ⊆ L!
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CZF Realisability Exponentiation V = L

Partial combinatory algebras

A partial combinatory algebra (PCA) is a set A with a partial
application operation A×A⇀ A, with two distinguished
combinators:

▶ for any a, b ∈ A, kab↓ and kab = a;

▶ for any a, b, c ∈ A, sab↓ and sabc ≃ (ac)(bc).

Here, we say that a (formal) application term t converges, denoted
t↓ if all application operations involved are defined, and we write
t ≃ s if both converges to the same value, or if both diverges.

For example, A = N where ab evaluates to the result of running
the ath Turing machine on input b is a PCA.
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Partial combinatory algebras

A partial combinatory algebra (PCA) is a set A with a partial
application operation A×A⇀ A, with two distinguished
combinators:

▶ for any a, b ∈ A, kab↓ and kab = a;

▶ for any a, b, c ∈ A, sab↓ and sabc ≃ (ac)(bc).

PCAs give one some generalised notion of computation. For
example, we have the following basic properties:

▶ When t is a (formal) term containing some variable symbol x ,
then λx .t is also a term in A.

▶ We have the usual fixed-point combinators in PCAs, so we
can define functions by recursion.
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CZF Realisability Exponentiation V = L

Additional structures on PCAs

A PCA over the natural numbers is some A ⊇ N with:

▶ sN ,pN ∈ A such that for any n ∈ N, sNn↓ = n + 1 and
pNn↓ = max{n − 1, 0};

▶ definition by cases d ∈ A, such that for any terms a, b and
c1, c2 ∈ N,

dabc1c2 ≃

{
a if c1 = c2,

b otherwise.

We also often identify distinguished pairing functions p,p0,p1 ∈ A
in a PCA such that

p0(pab) ≃ a, p1(pab) ≃ b.
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CZF Realisability Exponentiation V = L

Kleene realisability CZF ↪→ CZF (Rathjen 2006)

Fix a PCA A (over the natural numbers), the class of names
V (A) =

⋃
α∈Ord V (A)α is given by

V (A)α =
⋃
β∈α

P
(
A× V (A)β

)
.

Realisability conditions:

e ⊩ a ∈ b ⇔ ∃c (⟨p0e↓, c⟩ ∈ b ∧ p1e ⊩ a = c) ,

e ⊩ a = b ⇔ ∀f , d ((⟨f , d⟩ ∈ a → p0ef ⊩ d ∈ b)

∧ (⟨f , d⟩ ∈ b → p1ef ⊩ d ∈ a)) .

Proposition

There is a fixed i ∈ A such that i ⊩ a = a for all a ∈ V (A).
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Kleene realisability CZF ↪→ CZF (Rathjen 2006)

Realisability conditions (continued):

e ⊩ φ ∧ ψ ⇔ p0e ⊩ φ ∧ p1e ⊩ ψ,

e ⊩ φ ∨ ψ ⇔ (p0e↓ = 0 ∧ p1e ⊩ φ)

∨ (p0e↓ = 1 ∧ p1e ⊩ ψ) ,

e ⊩ ¬φ ⇔ ∀f ∈ A f ⊮ φ,

e ⊩ φ→ ψ ⇔ ∀f ∈ A (f ⊩ φ→ ef ⊩ ψ) ,

e ⊩ ∀x ∈ a φ(x) ⇔ ∀⟨f , c⟩ ∈ a ef ⊩ φ(c),

e ⊩ ∃x ∈ a φ(x) ⇔ ∃c (⟨p0e↓, c⟩ ∈ a ∧ p1e ⊩ φ(c)) ,

e ⊩ ∀x φ(x) ⇔ ∀c ∈ V (A) e ⊩ φ(c),

e ⊩ ∃x φ(x) ⇔ ∃c ∈ V (A) e ⊩ φ(c).
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CZF Realisability Exponentiation V = L

Kleene realisability CZF ↪→ CZF (Rathjen 2006)

Theorem (Rathjen, 2006)

CZF proves that for every theorem φ of CZF, there is a realiser
e ∈ A such that e ⊩ φ.

Proposition (W.)

There is a realiser e ∈ A such that

e ⊩ ∃α ∈ Ord α ⊊ Lα ∩Ord.
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CZF Realisability Exponentiation V = L

“Exotic” ordinals

Here are the usual constructions for ω in V (A):

n = {⟨m,m⟩ : m ∈ n} ,
ω = {⟨n, n⟩ : n ∈ ω} ,

then some e ⊩ ω is the smallest inductive set.

If we consider 2
′
=

{〈
1, 0

〉
,
〈
0, 1

〉}
, then some f ⊩ 2 = 2

′
.

However, any realiser

g ⊮
{〈

1, 2
〉
,
〈
1, 2

′
〉}

=
{〈

1, 2
〉}
,

so the left-hand side is actually a proper superset!
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“Exotic” ordinals

Here, we will look at

3
∗
=

{〈
0, 0

〉
,
〈
0, 1

〉
,
〈
1, 2

〉
,
〈
1, 2

′
〉}

.

We shall sketch a proof that L3∗ ∩Ord ⊆ 3
∗
is not realised!
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“Exotic” ordinals

Here, we will look at

3
∗
=

{〈
0, 0

〉
,
〈
0, 1

〉
,
〈
1, 2

〉
,
〈
1, 2

′
〉}

.

We shall sketch a proof that L3∗ ∩Ord ⊆ 3
∗
is not realised!

The general idea is that a same realiser realises 0 ∈ 2 and 1 ∈ 2
′
.

From this, also a same realiser realises

0 = L0 ∩Ord ∈ L2 and 1 = L1 ∩Ord ∈ L
2
′ .

Consequently, we have a same realiser for the successors

0
+ ∈ def(L2) ⊆ L3∗ and 1

+ ∈ def
(
L
2
′
)
⊆ L3∗ .
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“Exotic” ordinals
Here, we will look at

3
∗
=

{〈
0, 0

〉
,
〈
0, 1

〉
,
〈
1, 2

〉
,
〈
1, 2

′
〉}

.

However, suppose that f ⊩ L3∗ ∩Ord ⊆ 3
∗
, while

e ⊩ both 0
+
, 1

+ ∈ L3 ∩Ord, then

0 = p0(f (p0e)) = 1,

a contradiction.

In fact, we can realise

3
∗
= {x ∈ L3∗ ∩Ord : (x ⊆ 1 ∧ (¬¬0 ∈ x → 0 ∈ x)) ∨

(¬¬x = 2 ∧ ∀y ∈ x (y = 0 → 1 ∈ x) ∧ ∃y , z ∈ x (¬y = z))} .

Shuwei Wang University of Leeds
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CZF Realisability Exponentiation V = L

Not an inner model!

A more important recent result proved through a realisability
model is

Theorem (Matthews & Rathjen, 2024)

CZF ⊬ L ⊨ CZF.

More specifically, it is shown that even CZF(P) does not prove
that L satisfies the axiom of Exponentiation, a consequence of
Subset Collection. Namely, it is shown that

Proposition

CZF(P) ⊬ L ⊨ the set of all functions from ω to ω exists.
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E℘-recursive functions

We use the definition of a PCA consisting of (class) functions
acting on all sets, as given in Rathjen [8]. There we have ω as a
constant and additional distinguished combinators:

πxy ≃ {x , y} , νx ≃
⋃

x ,

γxy ≃ x ∩
⋂

y , ρxy ≃ {xu : u ∈ y} ,

i1xyz ≃ {u ∈ x : y ∈ z} ,
i2xyz ≃ {u ∈ x : u ∈ y → u ∈ z} ,
i3xyz ≃ {u ∈ x : u ∈ y → z ∈ u} ,

℘x ≃ P(x).
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Weakened-realisability-with-truth of CZF(P)

The names for this realisability model are just arbitrary sets
themselves.

Weakened realisability: we are allowed to produce a (non-empty)
set of realisers without actually computing a specific inhabitant.

a ⊩ φ ∨ ψ ⇔ a ̸= ∅ ∧ ∀e ∈ a ((p0e↓ = 0 ∧ p1e ⊩ φ)

∨ (p0e↓ = 1 ∧ p1e ⊩ ψ)) ,

a ⊩ ∃x ∈ b φ(x) ⇔ a ̸= ∅ ∧ ∀e ∈ a (p0e↓ ∈ b ∧ p1e ⊩ φ(p0e)) ,

a ⊩ ∃x φ(x) ⇔ a ̸= ∅ ∧ ∀e ∈ a p1e ⊩ φ(p0e↓).
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CZF Realisability Exponentiation V = L

Weakened-realisability-with-truth of CZF(P)

The names for this realisability model are just arbitrary sets
themselves.

Realisability with truth: any realised formula must simultaneously
have a computational realiser AND hold in the meta-theory.

a ⊩ b ∈ c ⇔ b ∈ c ,

a ⊩ ¬φ ⇔ ¬φ ∧ ∀e e ⊮ φ,

a ⊩ φ→ ψ ⇔ (φ→ ψ) ∧ ∀f (f ⊩ φ→ af ⊩ ψ) .
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Weakened-realisability-with-truth of CZF(P)

The names for this realisability model are just arbitrary sets
themselves.

Realisability with truth: any realised formula must simultaneously
have a computational realiser AND hold in the meta-theory.

a ⊩ b ∈ c ⇔ b ∈ c ,

a ⊩ ¬φ ⇔ ¬φ ∧ ∀e e ⊮ φ,

a ⊩ φ→ ψ ⇔ (φ→ ψ) ∧ ∀f (f ⊩ φ→ af ⊩ ψ) .

Proposition (Rathjen, 2012)

For any formula φ, CZF(P) ⊢ (∃a a ⊩wt φ) → φ.
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Computational content

Theorem (Rathjen, 2012)

For any formula φ(x1, . . . , xn) (with all free variables listed), if
CZF(P) ⊢ φ, then one can effectively construct the index of an
E℘-recursive function f such that

CZF(P) ⊢ ∀a1, . . . , an fa1 · · · an ⊩wt φ(a1, . . . , an).
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Proof of CZF(P) ⊬ L ⊨ Exponentiation

Suppose that

CZF(P) ⊢ ∃α ∈ Ord ∃x ∈ Lα ∀f : ω → ω (f ∈ L → f ∈ x) .

We use the previous theorems to convert into realisability and back
into truth, which means we can find an E℘-recursive term t that
computes to a set of ordinals α satisfying the condition above.

Now, one key result in the 2012 paper, Rathjen [8], (proved using
a variant of this realisability model) is that

Proposition

CZF(P) is ΠP
2 -conservative over IKP(P).
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CZF Realisability Exponentiation V = L

Proof of CZF(P) ⊬ L ⊨ Exponentiation

Using this conservativity, IKP(P) already proves that the
E℘-recursive term t evaluates to a set. By Cook & Rathjen’s
relativised ordinal analysis of IKP(P) [3], this set additionally lies
in Vσ for some recursive ordinal σ < BH. In other words,

CZF(P) ⊢ ∃α ∈ Vσ ∩Ord ∀f : ω → ω (f ∈ Lσ → f ∈ Lα) .

This sentence is ΣP
1 , so by conservativity again, it is also provable

in IKP(P) and thus KP(P). So α is a gap ordinal, but classically,
the smallest gap ordinal is much larger than BH, as a result by
Leeds & Putnam [4]. A contradiction.
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Relativised ordinal analysis

The key step in the preceding proof is the relativised ordinal
analysis (first used on the classical theory KP(P) in Rathjen [10]),
which essentially implies that IKP(P) (and KP(P)) cannot prove
the existence of ordinals beyond BH.

In [11], this is applied to show that

Theorem (Rathjen, 2020)

KP(P) + V = L is much stronger than KP(P).

Question
Is there a similar proof that CZF+ V = L is much stronger than
CZF?
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CZF Realisability Exponentiation V = L

The V = L model

Question
Is there a similar proof that CZF+ V = L is much stronger than
CZF?

The answer is no.

Theorem (W.)

CZF+ V = L is equi-consistent with CZF.

We shall sketch an interpretation

CZF+ V = L ↪→ ML1V
X ↪→ BI ≡Con CZF.
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Analysing Gödel’s L in Realisability Models of CZF



CZF Realisability Exponentiation V = L

The V = L model

Question
Is there a similar proof that CZF+ V = L is much stronger than
CZF?

The answer is no.

Theorem (W.)

CZF+ V = L is equi-consistent with CZF.

We shall sketch an interpretation

CZF+ V = L ↪→ ML1V
X ↪→ BI ≡Con CZF.

Shuwei Wang University of Leeds
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The type theory ML1V
X

We have the following types:

1. finite types n for each n ∈ N,
2. the type N of natural numbers,

3. an arbitrary type X , given by a set X ⊆ N in the
interpretation ML1V

X ↪→ BI,

4. dependent Σ and Π types,

5. one universe U, closed under the type constructions above,

6. a single W -type denoted V , with the following constructor:

Γ ⊢ A : U, f : A → V

Γ ⊢ sup(A, f ) : V

Shuwei Wang University of Leeds
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Interpretations

The interpretation CZF ↪→ ML1V introduced by Aczel [1] is
essentially a realisability model: the names are terms of type V ;
the notion of computation is given by corresponding function types.

The interpretation ML1V ↪→ BI (which, combined with the above,
gives an formal realisability model CZF ↪→ BI over the PCA of
Turing machines) is then set-up in Rathjen [9].
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Subcountability

A crucial feature of the interpretation ML1V ↪→ BI is that every
type A is interpreted by a subset of N. This means that the
realisability model realises the following set-theoretic axiom:

Subcountability: ∀x ∃y ⊆ ω ∃f : y → x surjection.

Corollary (CZF+ Subcountability)

If every x ⊆ ω lies in L, then V = L.

Proof.
W.l.o.g. consider some transitive x ∈ V . Then (x ,∈) ∼= (U,E )
where U ⊆ N, E ⊆ N× N. Now, U,E ∈ L by assumption, so we
can reconstruct x .
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Setting-up for realising P(ω) ⊆ L

In [5], Lubarsky shows that CZF ⊢ ∀n ∈ ω n = Ln ∩Ord. It
follows:

Lemma
If α ∈ P(ω) ∩Ord, then

α =
⋃
n∈α

n+ =
⋃
n∈α

def(Ln) ∩Ord = Lα ∩Ord.

Fix α0 ∈ P(ω)∩Ord, we can extract f0 : ω → P(ω)∩Ord given by

f0(i) = {n ∈ ω : ∀k ≤ n π(i , k) ∈ α0} ∈ L,

where π : N× N → N is some (recursive) pairing bijection.
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Incomparable ordinals
We say that f : ω → P(ω) ∩Ord is pairwise incomparable iff
(intuitively) for any i ̸= j ∈ ω, f (i) and f (j) are not subsets of
each other. Formally, we want

∀i , j ∈ ω (f (i) ⊆ f (j) → i = j) .

Proposition

If aforementioned f0 ∈ L is pairwise incomparable, then P(ω) ⊆ L.

Proof.
For any x ⊆ ω, we take σ =

⋃
n∈x def

(
Lf0(n)

)
∩Ord ∈ L and verify

x = {n ∈ ω : Lη ⊨ f0(n) ∈ σ} ∈ L

for some large enough η ∈ Ord.
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A priority argument

A ordinal α ⊆ ω in the realisability model can be (roughly) given
by the name sup(A, f ) where A is a type (i.e. a subset of N in the
meta-theory) and f : A → N is a recursive bijection. ω ̸⊆ α is
realised iff the inverse of f is not recursive.

More generally, names α = sup(A, f ) and β = sup(B, g) are both
not subsets of each other iff both g−1 ◦ f and f −1 ◦ g are not
recursive.

Thus, to get the f0 we need, we want the distinguished type X in
our ML1V

X to interpret some X ⊆ N satisfying
Ri ,j ,f : there exists m ∈ N such that if we input the first
π(i ,m) elements of X to the Turing machine Φf , it does
not compute the first π(j ,m) elements of X

for all i , j , f ∈ N.
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A priority argument

Ri ,j ,f : there exists m ∈ N such that if we input the first
π(i ,m) elements of X to the Turing machine Φf , it does
not compute the first π(j ,m) elements of X

But this is possible so long as for any i , j ∈ N, there are arbitrarily
large numbers m such that π(i ,m) < π(j ,m). Then we just use
arithmetic recursion to construct the set X .

We just need to pick an appropriate pairing function. For example,

π(a, b) =

{
max{a, b} · (max{a, b}+ 1)− a+ b if max{a, b} is even,

max{a, b} · (max{a, b}+ 1) + a− b otherwise;
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Finally,

Combining all these constructions, we have a realisability model

CZF+ Subcountability + V = L ↪→ BI ≡Con CZF.

Open Question

What about CZF(P)? Is CZF(P) + V = L equi-consistent with
CZF(P) or stronger?

Open Question

It is even harder to construct non-classical models of V ̸= L.
Ultimately, can we violate Ord ⊆ L?
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Thank you!
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